High-quality and high-resolution precipitation data are the basis for mesoscale numerical weather forecasting,model verification,and hydrological monitoring,which play an important role in meteorological and hydrologi...High-quality and high-resolution precipitation data are the basis for mesoscale numerical weather forecasting,model verification,and hydrological monitoring,which play an important role in meteorological and hydrological disaster prevention and mitigation.In this study,high-density rain gauge data are used to evaluate the fusion accuracy of the China Meteorological Administration Multisource Precipitation Analysis System(CMPAS),and four CMPAS products with different spatial and temporal resolution and different data sources are compared,to derive the applicability of CMPAS.Results show that all the CMPAS products show high accuracy in the Sichuan Basin,followed by Panxi Area and the western Sichuan Plateau.The errors of the four products all rise with the increase in precipitation.CMPAS overestimates precipitation in summer and autumn and underestimates it in spring and winter.Overall,the applicability of these fused data in the Sichuan Basin is quite good.Due to the lack of observations and the influence of the terrain and meteorological conditions,the evaluation of CMPAS in the plateau area needs further analysis.展开更多
A new framework of region-based dynamic image fusion is proposed. First, the technique of target detection is applied to dynamic images (image sequences) to segment images into different targets and background regions...A new framework of region-based dynamic image fusion is proposed. First, the technique of target detection is applied to dynamic images (image sequences) to segment images into different targets and background regions. Then different fusion rules are employed in different regions so that the target information is preserved as much as possible. In addition, steerable non-separable wavelet frame transform is used in the process of multi-resolution analysis, so the system achieves favorable characters of orientation and invariant shift. Compared with other image fusion methods, experimental results showed that the proposed method has better capabilities of target recognition and preserves clear background information.展开更多
基金supported by the Sichuan Meteorological Bureau,the Sichuan Meteorological Observation and Data Centerthe Heavy Rain and Drought-Flood Disasters in Plateau and Basin Key Laboratory of Sichuan Province[grant number SCQXKJQN202121]+1 种基金the Key Technology Development Project of Weather Forecasting[grant number YBGJXM(2020)1A-08]the Innovative Development Project of the China Meteorological Administration[grant number CXFZ2021Z007]。
文摘High-quality and high-resolution precipitation data are the basis for mesoscale numerical weather forecasting,model verification,and hydrological monitoring,which play an important role in meteorological and hydrological disaster prevention and mitigation.In this study,high-density rain gauge data are used to evaluate the fusion accuracy of the China Meteorological Administration Multisource Precipitation Analysis System(CMPAS),and four CMPAS products with different spatial and temporal resolution and different data sources are compared,to derive the applicability of CMPAS.Results show that all the CMPAS products show high accuracy in the Sichuan Basin,followed by Panxi Area and the western Sichuan Plateau.The errors of the four products all rise with the increase in precipitation.CMPAS overestimates precipitation in summer and autumn and underestimates it in spring and winter.Overall,the applicability of these fused data in the Sichuan Basin is quite good.Due to the lack of observations and the influence of the terrain and meteorological conditions,the evaluation of CMPAS in the plateau area needs further analysis.
基金Project (No. 2004CB719401) supported by the National Basic Research Program (973) of China
文摘A new framework of region-based dynamic image fusion is proposed. First, the technique of target detection is applied to dynamic images (image sequences) to segment images into different targets and background regions. Then different fusion rules are employed in different regions so that the target information is preserved as much as possible. In addition, steerable non-separable wavelet frame transform is used in the process of multi-resolution analysis, so the system achieves favorable characters of orientation and invariant shift. Compared with other image fusion methods, experimental results showed that the proposed method has better capabilities of target recognition and preserves clear background information.