The karst process acts as carbon sequestration for atmospheric CO_2.The amount of karst carbon sequestration (KCS) depends on the discharge of karst catchment and inorganic carbon concentration of the water body.Based...The karst process acts as carbon sequestration for atmospheric CO_2.The amount of karst carbon sequestration (KCS) depends on the discharge of karst catchment and inorganic carbon concentration of the water body.Based on the data from the monitoring station on Banzhai subterranean stream located in Maolan National Nature Reserve of Guizhou province,the process and influence factors of KCS have been analyzed.It shows that the amount of KCS is about 353 t C per year in the catchment of Banzhai subterranean stream,and there is good linear relationship between the strength of KCS and discharge of the stream at various time scales.Therefore,how to monitor the discharge accurately is the key to the estimation of KCS.And stations with real-time monitoring function are very important for KCS calculation because of strong seasonal variability of the karst water cycle.展开更多
Relationships between topography,soil properties and the distribution of plant communities on two different rocky hillsides are examined in two subtropical karst forests in the Maolan National Natural Reserve,southwes...Relationships between topography,soil properties and the distribution of plant communities on two different rocky hillsides are examined in two subtropical karst forests in the Maolan National Natural Reserve,southwestern China.Surveys of two 1-ha permanent plots at each forest,and measurements of four topographic and thirteen edaphic factors on the slopes were performed.Twoway Indicator Species Analysis(TWINSPAN) and Detrended Canonical Correspondence Analysis(DCCA) were used for the classification of plant communities and for vegetation ordination with environmental variables.One hundred 10m×10m quadrats in each plot were classified into four plant community types.A clear altitudinal gradient suggested that elevation was important in community differentiation.The topography and soil explained 51.06% and 54.69% of the variability of the distribution of plant species in the two forest plots,respectively,indicating both topographic factors(eg.elevation,slope and rock-bareness rate) and edaphic factors(e.g.total P,K and exchangeable Ca) were the important drivers of the distribution of woody plant species in subtropical karst forest.However,our results suggested that topographical factors were more important than edaphic ones in affecting local plant distribution on steep slopes with extensive rock outcrops,while edaphic factors were more influential on gentle slope and relatively thick soil over rock in subtropical karst forest.Understanding relationships between vegetation and environmental factors in karst forest ecosystems would enable us to apply these findings in vegetation management strategies and restoration of forest communities.展开更多
Understanding present patterns of genetic diversity is critical in order to design effective conservation and manage- ment strategies for endangered species. Tangjiahe Nature Reserve (NR) is one of the most importan...Understanding present patterns of genetic diversity is critical in order to design effective conservation and manage- ment strategies for endangered species. Tangjiahe Nature Reserve (NR) is one of the most important national reserves for giant pandas Ailuropoda melanoleuca in China. Previous studies have shown that giant pandas in Tangjiahe NR may be threatened by population decline and fragmentation. Here we used 10 microsatellite DNA markers to assess the genetic variability in the Tang- jiahe population. The results indicate a low level of genetic differentiation between the Hongshihe and Motianling subpopulations in the reserve. Assignment tests using the Bayesian clustering method in STRUCTURE identified one genetic cluster from 42 in- dividuals of the two subpopulations. All individuals from the same subpopulation were assigned to one cluster. This indicates high gene flow between subpopulations. F statistic analyses revealed a low Fzs-value of 0.024 in the total population and implies a randomly mating population in Tangjiahe NR. Additionally, our data show a high level of genetic diversity for the Tangjiahe population. Mean allele number (A), Allelic richness (AR) and mean expected heterozygosity (HE) for the Tangjiahe population was 5.9, 5.173 and 0.703, respectively. This wild giant panda population can be restored through concerted effort展开更多
基金funded by the project (No.41072192)from National Natural Science Foundation of Chinathe project(No.1212011087122)from China Geological Survey
文摘The karst process acts as carbon sequestration for atmospheric CO_2.The amount of karst carbon sequestration (KCS) depends on the discharge of karst catchment and inorganic carbon concentration of the water body.Based on the data from the monitoring station on Banzhai subterranean stream located in Maolan National Nature Reserve of Guizhou province,the process and influence factors of KCS have been analyzed.It shows that the amount of KCS is about 353 t C per year in the catchment of Banzhai subterranean stream,and there is good linear relationship between the strength of KCS and discharge of the stream at various time scales.Therefore,how to monitor the discharge accurately is the key to the estimation of KCS.And stations with real-time monitoring function are very important for KCS calculation because of strong seasonal variability of the karst water cycle.
基金supported by the "Hundred Talents Program" of the Chinese Academy of Sciences (to Jian Ni)the National Basic Research Program (No. 973) of the Ministry of Science and Technology of China(Grant No. 2013CB956704)the Scientific Research Foundation of the Education Department of Guangxi Zhuang Autonomous Region (Grant No.201106LX296)
文摘Relationships between topography,soil properties and the distribution of plant communities on two different rocky hillsides are examined in two subtropical karst forests in the Maolan National Natural Reserve,southwestern China.Surveys of two 1-ha permanent plots at each forest,and measurements of four topographic and thirteen edaphic factors on the slopes were performed.Twoway Indicator Species Analysis(TWINSPAN) and Detrended Canonical Correspondence Analysis(DCCA) were used for the classification of plant communities and for vegetation ordination with environmental variables.One hundred 10m×10m quadrats in each plot were classified into four plant community types.A clear altitudinal gradient suggested that elevation was important in community differentiation.The topography and soil explained 51.06% and 54.69% of the variability of the distribution of plant species in the two forest plots,respectively,indicating both topographic factors(eg.elevation,slope and rock-bareness rate) and edaphic factors(e.g.total P,K and exchangeable Ca) were the important drivers of the distribution of woody plant species in subtropical karst forest.However,our results suggested that topographical factors were more important than edaphic ones in affecting local plant distribution on steep slopes with extensive rock outcrops,while edaphic factors were more influential on gentle slope and relatively thick soil over rock in subtropical karst forest.Understanding relationships between vegetation and environmental factors in karst forest ecosystems would enable us to apply these findings in vegetation management strategies and restoration of forest communities.
文摘Understanding present patterns of genetic diversity is critical in order to design effective conservation and manage- ment strategies for endangered species. Tangjiahe Nature Reserve (NR) is one of the most important national reserves for giant pandas Ailuropoda melanoleuca in China. Previous studies have shown that giant pandas in Tangjiahe NR may be threatened by population decline and fragmentation. Here we used 10 microsatellite DNA markers to assess the genetic variability in the Tang- jiahe population. The results indicate a low level of genetic differentiation between the Hongshihe and Motianling subpopulations in the reserve. Assignment tests using the Bayesian clustering method in STRUCTURE identified one genetic cluster from 42 in- dividuals of the two subpopulations. All individuals from the same subpopulation were assigned to one cluster. This indicates high gene flow between subpopulations. F statistic analyses revealed a low Fzs-value of 0.024 in the total population and implies a randomly mating population in Tangjiahe NR. Additionally, our data show a high level of genetic diversity for the Tangjiahe population. Mean allele number (A), Allelic richness (AR) and mean expected heterozygosity (HE) for the Tangjiahe population was 5.9, 5.173 and 0.703, respectively. This wild giant panda population can be restored through concerted effort