A new one-dimensional system for resistivity measurement for natural gas hydrate(NGH)exploitation is designed,which is used to study the formation and decomposition processes of NGH.The experimental results verify the...A new one-dimensional system for resistivity measurement for natural gas hydrate(NGH)exploitation is designed,which is used to study the formation and decomposition processes of NGH.The experimental results verify the feasibility of the measurement method,especially in monitoring the nucleation and growth of the NGH. Isovolumetric formation experiment of NGH is performed at 2°C and 7.8 MPa.Before the NGH formation,the initial resistivity is measured to be 4-7Ω·m,which declines to the minimum value of 2-3Ω·m when NGH begins to nucleate after the pressure is reduced to 3.3 MPa.As the NGH grows,the resistivity increases to a great extent,and finally it keeps at 11-13Ω·m,indicating the completion of the formation process.The NGH decomposition experiment is then performed.When the outlet pressure decreases,NGH begins to decompose,accordingly,the resistivity declines gradually,and is at 5-9Ω·m when the decomposition process ends,which is slightly higher than the resistivity value before the formation of NGH.The occurrence and distribution uniformity of NGH are determined by the distribution and magnitude of the resistivity measured on an one-dimensional sand-packed model.This study tackles the accurate estimation for the distribution of NGH in porous medium,and provides an experimental basis for further study on NGH exploitation in the future.展开更多
Using nickel(II) acetate.-2,2'-dipyridyl complex as template and N-vinyl-2-pyrrolidone (NVP) as coordinate functional monomer,.a new kind of metal-compiexing template molecularly impnnted polymer (MIP) was prep...Using nickel(II) acetate.-2,2'-dipyridyl complex as template and N-vinyl-2-pyrrolidone (NVP) as coordinate functional monomer,.a new kind of metal-compiexing template molecularly impnnted polymer (MIP) was prepared..The results of equilibri.um binding experiments in. aqueous solution showed that the MIP had higher'binding capacity for nickel( II )-2,2'-dipyridyl than the non-imprinted polymer with the same chemical composition. Theinfluences of metal ions and pHof solution on the recognition performance of MIP were investigated. The bindingcharacteristics of MIP were evaluated by the Scatchard analysis with one-site and two-site binding equations, respectively. The results on substrate selectivity of imprinted polymer revealed that MIP had better binding affinityfor template among thetested compounds.展开更多
The aim of this work is to simulate thermal deformation of tool system and investigate the influence of cutting parameters on it in single-point diamond turning(SPDT) of aluminum alloy. The experiments with various cu...The aim of this work is to simulate thermal deformation of tool system and investigate the influence of cutting parameters on it in single-point diamond turning(SPDT) of aluminum alloy. The experiments with various cutting parameters were conducted. Cutting temperature was measured by FLIR A315 infrared thermal imager. Tool wear was measured by scanning electron microscope(SEM). The numerical model of heat flux considering tool wear generated in cutting zone was established. Then two-step finite element method(FEM) simulations matching the experimental conditions were carried out to simulate the thermal deformation. In addition, the tests of deformation of tool system were performed to verify previous simulation results. And then the influence of cutting parameters on thermal deformation was investigated. The results show that the temperature and thermal deformation from simulations agree well with the results from experiments in the same conditions. The maximum thermal deformation of tool reaches to 7 μm. The average flank wear width and cutting speed are the dominant factors affecting thermal deformation, and the effective way to decrease the thermal deformation of tool is to control the tool wear and the cutting speed.展开更多
A new facility was presented which can expediently and cheaply measure the transient moisture content profile in multi-layer porous building envelope.Then,a common multi-layer porous building envelope was provided,whi...A new facility was presented which can expediently and cheaply measure the transient moisture content profile in multi-layer porous building envelope.Then,a common multi-layer porous building envelope was provided,which was constructed by cement mortar-red brick-cement plaster.With this kind of building envelope installed in the south wall,a well-controlled air-conditioning room was set up in Changsha,which is one of typical zones of hot and humid climate in China.And experiments were carried out to investigate the temperature and moisture distribution in multi-layer building envelope in summer,both in sunny day and rainy day.The results show that,the temperature and humidity at the interface between the brick and cement mortar are seriously affected by the changes of outdoor temperature and humidity,and the relative humidity at this interface keeps more than 80% for a long-term,which can easily trigger the growth of mould.The temperature and humidity at the interface between the brick and cement plaster change a little,and they are affected by the changes of indoor temperature and humidity.The temperature and humidity at the interface of the wall whose interior surface is affixed with a foam plastic wallpaper are generally higher than those of the wall without wallpaper.The heat transfer and moisture transfer in the envelope are coupled strongly.展开更多
A new "conceptual" design named "double pull" specimen was proposed in order to measure the bond-slip(δ-τ) relationship of fiber reinforced polymer(FRP)-to-concrete interface more accurately.A fi...A new "conceptual" design named "double pull" specimen was proposed in order to measure the bond-slip(δ-τ) relationship of fiber reinforced polymer(FRP)-to-concrete interface more accurately.A finite element analysis(FEA) was performed for preliminarily evaluating the suitability of the proposed conceptual double pull specimen.Through the FEA,it was indicated that the FRP-to-concrete interface of the proposed conceptual specimen might subject to a much higher load level than that of the most commonly used simple shear specimen,showing a great potential for measuring δ-τ relationship more accurately.In the light of the conceptual specimen,a kind of "practical" double pull specimen was developed and proved to be more suitable for measuring δ-τ relationship through an exploratory experimental study with 20 specimens.Consequently,an experimental program with 10 double pull specimens was performed for measuring the ultimate slip δu which was difficult to capture by using the existing specimens.It is shown that the range of δu is 0.31-0.52 mm based on the test results.The suggestion for improving the measure method is also put forward.展开更多
Thermal decomposition of 21 kinds of binary mixtures between typical medical compositions was investigated under nitrogen conditions by dynamic thermogravimetric analysis(TGA) at 25–800 °C. The weighed sum metho...Thermal decomposition of 21 kinds of binary mixtures between typical medical compositions was investigated under nitrogen conditions by dynamic thermogravimetric analysis(TGA) at 25–800 °C. The weighed sum method(WSM) coupled with thermal analysis was applied to study the interaction between components. Then, co-pyrolysis kinetic model of the binary mixtures(tube for transfusion(TFT) and gauze) was established to verify the reliability of conclusions. The results show the follows. 1) Strong or weak interactions are shown between binary mixtures containing polyvinyl chloride(PVC), the main ingredient of TFT. The addition of other medical waste could enhance first stage decomposition of TFT. While, the secondary stage pyrolysis may be suppressed or enhanced or not affected by the addition. 2) There exists no interaction between catheter and other component, the DTG peak temperature representing Ca CO3 decomposition in catheter fraction is obviously lower than that of pure catheter; while,the shape of DTG peak keeps unchanged. 3) No evident reaction occurs between the other mix-samples, it is considered that their co-pyrolysis characteristics are linear superposition of mono-component pyrolysis characteristics.展开更多
The theoretical calculation and spectroscopic experiments indicate a kind of triangular three bonding supramolecular complexes CBr4…X^-…-H-C, which consist of carbon tetrabromide, halide, and protic solvent molecule...The theoretical calculation and spectroscopic experiments indicate a kind of triangular three bonding supramolecular complexes CBr4…X^-…-H-C, which consist of carbon tetrabromide, halide, and protic solvent molecule (referring to dichloromethane, chloroform and acetonitrile), can be formed in solution. The strength of halogen and hydrogen bonds in the triangular complexes using halide as common acceptor obeys the order of iodide〉bromide〉chloride. The halogen and hydrogen bonds work weak-cooperatively. Charge transfer bands of halogen bonding complexes between CBra and halide are observed in UV-Vis absorption spectroscopy in three solvents, and then the stoichiometry of 1:1, formation constants K and molar extinction coefficients ε of the halogen bonding complexes are obtained by Benesi-Hildebrand method. The K and ε show a dependence on the solvent dielectric constant and, on the whole, obey an order of iodide〉bromide〉chloride in the same solvents. Furthermore, the C-H vibrational frequencies of solvent molecules vary obviously with the addition of halide, which indicates the C-H…X- interaction. The experimental data indicate that the halogen bond and hydrogen bond coexist by sharing a common halide acceptor as predicted by calculation.展开更多
Modelling and simulation has become an important tool in research and development. Simulation models are used to develop better understanding of the internal properties and impact of various parameters on the final qu...Modelling and simulation has become an important tool in research and development. Simulation models are used to develop better understanding of the internal properties and impact of various parameters on the final quality of the product or process. Simulation model reduces the number of experiments and saves the wastage of material, time and money and are widely used in automobile industry, aircrafts manufacturing, process engineering, training for military, health care sector and many more. Wood Plastic Composite (WPC) is a bio-composite made by mixing wood fibers and plastic granules together at high temperature by compression molding or injection molding. A large quantity of WPC is rejected due to poor quality and low mechanical strength. There is a need to improve the understanding of the wood plastic composites, with both theoretical and experimental analysis. The impact of various parameters and processing conditions on the final product is not known to the industry people, due to less simulation models in this field. A new simulation software WPC Soft is developed to predict the mechanical and thermal properties of WPC. The software can predict the mechanical and thermal properties of WPC. The simulation results were validated with the experimental results and it was observed that the predicted values are quite close to the experimental values and with the further refining of the model, prediction can be further improved. The present simulation software can be easily used by the industry people and it requires very little knowledge of computers or modeling for its operation.展开更多
Terms of synthesis were defined for the creation of new generation chelate fertilizers and for their experimental testing. Glutamine acid and citric acid containing chelate citrates of the general formulae M.gI.HL'nH...Terms of synthesis were defined for the creation of new generation chelate fertilizers and for their experimental testing. Glutamine acid and citric acid containing chelate citrates of the general formulae M.gI.HL'nHO were synthesized, where, M = Mn, Zn, Fe, Co, Cu; n = 0; 1; 1.5; gl-glutamine acid; HL-citric acid anion. Identity and composition of synthesized compounds were determined by microelemental analysis, melting temperature and X-ray diffraction analysis. X-ray diffraction analysis of the compounds and glutamine acid and citric acid (H4L) was used to determine their crystalline structure and roentgen-amorphous and iso-structural orders. Their solubility was studied in various solvents.展开更多
The comers with small radii on cross sections are crucial for forming hydroformed components with polygonal sections. In this paper, warm hydroforming experiments of AZ61A magnesium alloy tubes were cartied out to stu...The comers with small radii on cross sections are crucial for forming hydroformed components with polygonal sections. In this paper, warm hydroforming experiments of AZ61A magnesium alloy tubes were cartied out to study the forming regularity of round comers by using a demonstration part with square sections. Effects of temperature on radius forming, thinning ratio distribution and microstructure were revealed and a component with relative outer corner radius of 3.0 was obtained by warm hydroforming at 240℃. The minimum thickness of the formed square section was located in the transition position between the corner and the straight wall. The thinning ratio of the round corner increased with the increase of forming temperature. Fotmability of the magnesium tube was improved by raising temperature under the effect of dynamic recrystallization at 240℃.展开更多
The QUENCH experimental programme at Karlsruhe under severe accident conditions, but while the geometry is still Institute of Technology investigates heat-up and reflooding of a core mainly rod-like. The recent QUENCH...The QUENCH experimental programme at Karlsruhe under severe accident conditions, but while the geometry is still Institute of Technology investigates heat-up and reflooding of a core mainly rod-like. The recent QUENCH-ACM series of experiments, comprising QUENCH-12 (El 10 cladding alloy), -14 (M5 alloy) and -15 (Zirlo^TM alloy), together with QUENCH-06 (reference case, Zircaloy-4 alloy) addressed the effect of alternative cladding materials on oxidation and quenching under similar conditions. Superficial inspection of the experimental results reveals only minor differences in the thermal and oxidation response, except for the much larger hydrogen release during reflood in QUENCH-12. Post-test calculations were performed using a version of SCDAP/RELAP5/MOD3.2, modified to represent the QUENCH facility and to invoke alternative oxidation correlations. The calculations agreed rather well with experiments QUENCH-06, -14 and -15, but the significant hydrogen release during reflood in QUENCH-12 was not captured. Closer examination of the experimental results reveals further differences between QUENCH-12 which may be linked to breakaway oxidation of the E110 cladding. The analyses support the heuristic observation that there was no major difference between the influence of Zircaloy-4, M5 or ZirloTM, but the E-110 exhibited a contrasting behaviour with a consequent impact on the reflooding.展开更多
Often masonry walls of historical buildings are subject to rising damp effects due to capillary or rain infiltrations. In the time, their cyclic action produces decay and delamination of historical plasters. An experi...Often masonry walls of historical buildings are subject to rising damp effects due to capillary or rain infiltrations. In the time, their cyclic action produces decay and delamination of historical plasters. An experimental laboratory procedure for the pre-qualification of repair mortars is described. Long-term plaster delamination frequently occurs because of the mechanical incompatibility of new repair mortars. The tested mortars are suitable for new dehumidified plasters applied to historical masonry walls. Compression static tests were carried out on composite specimens stSone block-repair mortar, which specific geometry can test the de-bonding process of mortar in adherence with historical masonry structure. A numerical simulation based on the cohesive crack model was used to follow the experimental data, in order to describe the evolutionary phenomenon of de-bonding as a function of a small number of parameters. This method supplies useful indication for selecting the product that is best in keeping with the mechanical characteristics of the historical material, thereby avoiding errors associated with materials that are not mechanically compatible. Currently, the methodology is being used at Sacro Monte di Varallo Special Natural Reserve (UNESCO heritage site) in Piedmont (Italy).展开更多
The present paper focuses on the analysis of a synthetic jet device (with a zero net massflow rate) on a separated boundary layer. Separation has been obtained on a flat plate installed within a converging-diverging t...The present paper focuses on the analysis of a synthetic jet device (with a zero net massflow rate) on a separated boundary layer. Separation has been obtained on a flat plate installed within a converging-diverging test section specifically designed to attain a local velocity distribution typical of a high-lift LPT blade. Both experimental and numerical investigations have been carried out. Unsteady RANS results have been compared with experiments in terms of time-averaged velocity and turbulence intensity distributions. Two different Reynolds number cases have been investigated, namely Re = 200,000 and Re = 70,000, which characterize low-pressure turbine operating conditions during take-off/landing and cruise. A range of synthetic jet aerodynamic parameters (Strouhal number and blowing ratio) has been tested in order to analyze the features of control-separated boundary layer interaction for the aforementioned Reynolds numbers.展开更多
Surface recombination represents a handicap for high-efficiency solar cells. This is especially important for nanowire array solar cells, where the surface-to-volume ratio is greatly enhanced. Here, the effect of diff...Surface recombination represents a handicap for high-efficiency solar cells. This is especially important for nanowire array solar cells, where the surface-to-volume ratio is greatly enhanced. Here, the effect of different passivation materials on the effective recombination and on the device performance is experimentally analyzed. Our solar cells are large area top-down axial n-p junction silicon nanowires fabricated by means of Near-Field Phase-Shift Lithography (NF-PSL). We report an efficiency of 9.9% for the best cell, passivated with a SiO2/SiNx stack. The impact of the presence of a surface fixed charge density at the silicon/oxide interface is studied.展开更多
This comment will review and discuss recent results obtained with the use of calorimetry in assessing molecular information from complex phenomena such as association in surfactant/polymer mixtures. These examples wer...This comment will review and discuss recent results obtained with the use of calorimetry in assessing molecular information from complex phenomena such as association in surfactant/polymer mixtures. These examples were selected to support the view that it is possible to ally the great sensitivity of modem calorimeters with carefully planned experiments and, sometimes, ancillary techniques in order to derive detailed information on molecular interactions.展开更多
Gas hydrate decomposition in sediments involves complicated multiphase flow and heat and mass transfer processes because of heat absorption by solid hydrates. Factors affecting gas hydrate decomposition in sediments i...Gas hydrate decomposition in sediments involves complicated multiphase flow and heat and mass transfer processes because of heat absorption by solid hydrates. Factors affecting gas hydrate decomposition in sediments include sediment type, mineral composition, pore size distribution, particle size, pore water composition, hydrate saturation distribution, initial formation pressure and temperature and cement characteristics. In this paper, experimental simulations of gas hydrate decomposition are carried out on an artificial core to investigate the effects of initial pressure and temperature, particle size and pore size. The experiments show that the characteristics of gas hydrate decomposition in sediments differ completely from those in a pure water system. The decomposition rate of hydrate sediments increases with the initial pressure increasing and decreasing temperatures. Furthermore, the decomposition rate of hydrate sediments decreases with decreasing particle size and increasing pore size.展开更多
基金Supported by the National High Technology Research and Development Program of China(2006AA09A209)
文摘A new one-dimensional system for resistivity measurement for natural gas hydrate(NGH)exploitation is designed,which is used to study the formation and decomposition processes of NGH.The experimental results verify the feasibility of the measurement method,especially in monitoring the nucleation and growth of the NGH. Isovolumetric formation experiment of NGH is performed at 2°C and 7.8 MPa.Before the NGH formation,the initial resistivity is measured to be 4-7Ω·m,which declines to the minimum value of 2-3Ω·m when NGH begins to nucleate after the pressure is reduced to 3.3 MPa.As the NGH grows,the resistivity increases to a great extent,and finally it keeps at 11-13Ω·m,indicating the completion of the formation process.The NGH decomposition experiment is then performed.When the outlet pressure decreases,NGH begins to decompose,accordingly,the resistivity declines gradually,and is at 5-9Ω·m when the decomposition process ends,which is slightly higher than the resistivity value before the formation of NGH.The occurrence and distribution uniformity of NGH are determined by the distribution and magnitude of the resistivity measured on an one-dimensional sand-packed model.This study tackles the accurate estimation for the distribution of NGH in porous medium,and provides an experimental basis for further study on NGH exploitation in the future.
基金Supported by the Special Funds for Major State Basic Research Program of China(973 Project,No.2003CB615705).
文摘Using nickel(II) acetate.-2,2'-dipyridyl complex as template and N-vinyl-2-pyrrolidone (NVP) as coordinate functional monomer,.a new kind of metal-compiexing template molecularly impnnted polymer (MIP) was prepared..The results of equilibri.um binding experiments in. aqueous solution showed that the MIP had higher'binding capacity for nickel( II )-2,2'-dipyridyl than the non-imprinted polymer with the same chemical composition. Theinfluences of metal ions and pHof solution on the recognition performance of MIP were investigated. The bindingcharacteristics of MIP were evaluated by the Scatchard analysis with one-site and two-site binding equations, respectively. The results on substrate selectivity of imprinted polymer revealed that MIP had better binding affinityfor template among thetested compounds.
基金Project(51175122)supported by the National Natural Science Foundation of China
文摘The aim of this work is to simulate thermal deformation of tool system and investigate the influence of cutting parameters on it in single-point diamond turning(SPDT) of aluminum alloy. The experiments with various cutting parameters were conducted. Cutting temperature was measured by FLIR A315 infrared thermal imager. Tool wear was measured by scanning electron microscope(SEM). The numerical model of heat flux considering tool wear generated in cutting zone was established. Then two-step finite element method(FEM) simulations matching the experimental conditions were carried out to simulate the thermal deformation. In addition, the tests of deformation of tool system were performed to verify previous simulation results. And then the influence of cutting parameters on thermal deformation was investigated. The results show that the temperature and thermal deformation from simulations agree well with the results from experiments in the same conditions. The maximum thermal deformation of tool reaches to 7 μm. The average flank wear width and cutting speed are the dominant factors affecting thermal deformation, and the effective way to decrease the thermal deformation of tool is to control the tool wear and the cutting speed.
基金Project(51078127) supported by the National Natural Science Foundation of China
文摘A new facility was presented which can expediently and cheaply measure the transient moisture content profile in multi-layer porous building envelope.Then,a common multi-layer porous building envelope was provided,which was constructed by cement mortar-red brick-cement plaster.With this kind of building envelope installed in the south wall,a well-controlled air-conditioning room was set up in Changsha,which is one of typical zones of hot and humid climate in China.And experiments were carried out to investigate the temperature and moisture distribution in multi-layer building envelope in summer,both in sunny day and rainy day.The results show that,the temperature and humidity at the interface between the brick and cement mortar are seriously affected by the changes of outdoor temperature and humidity,and the relative humidity at this interface keeps more than 80% for a long-term,which can easily trigger the growth of mould.The temperature and humidity at the interface between the brick and cement plaster change a little,and they are affected by the changes of indoor temperature and humidity.The temperature and humidity at the interface of the wall whose interior surface is affixed with a foam plastic wallpaper are generally higher than those of the wall without wallpaper.The heat transfer and moisture transfer in the envelope are coupled strongly.
基金Project(2006BAJ03A07) supported by the National Key Technologies R & D Program of ChinaProject(5008283) supported by the Natural Science Foundation of Guangdong Province, China
文摘A new "conceptual" design named "double pull" specimen was proposed in order to measure the bond-slip(δ-τ) relationship of fiber reinforced polymer(FRP)-to-concrete interface more accurately.A finite element analysis(FEA) was performed for preliminarily evaluating the suitability of the proposed conceptual double pull specimen.Through the FEA,it was indicated that the FRP-to-concrete interface of the proposed conceptual specimen might subject to a much higher load level than that of the most commonly used simple shear specimen,showing a great potential for measuring δ-τ relationship more accurately.In the light of the conceptual specimen,a kind of "practical" double pull specimen was developed and proved to be more suitable for measuring δ-τ relationship through an exploratory experimental study with 20 specimens.Consequently,an experimental program with 10 double pull specimens was performed for measuring the ultimate slip δu which was difficult to capture by using the existing specimens.It is shown that the range of δu is 0.31-0.52 mm based on the test results.The suggestion for improving the measure method is also put forward.
基金Projects(51105269,51406133)supported by the National Natural Science Foundation of ChinaProject supported by the ScientificResearch Foundation for the Returned Overseas Chinese Scholars,Ministry of Education,ChinaProject supported by the Ministry ofEducation Key Laboratory Program,China
文摘Thermal decomposition of 21 kinds of binary mixtures between typical medical compositions was investigated under nitrogen conditions by dynamic thermogravimetric analysis(TGA) at 25–800 °C. The weighed sum method(WSM) coupled with thermal analysis was applied to study the interaction between components. Then, co-pyrolysis kinetic model of the binary mixtures(tube for transfusion(TFT) and gauze) was established to verify the reliability of conclusions. The results show the follows. 1) Strong or weak interactions are shown between binary mixtures containing polyvinyl chloride(PVC), the main ingredient of TFT. The addition of other medical waste could enhance first stage decomposition of TFT. While, the secondary stage pyrolysis may be suppressed or enhanced or not affected by the addition. 2) There exists no interaction between catheter and other component, the DTG peak temperature representing Ca CO3 decomposition in catheter fraction is obviously lower than that of pure catheter; while,the shape of DTG peak keeps unchanged. 3) No evident reaction occurs between the other mix-samples, it is considered that their co-pyrolysis characteristics are linear superposition of mono-component pyrolysis characteristics.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20675009 and No. 90922023). The basis set aug-cc-pVDZ-PP for iodine atom is downloaded at the website http://bse.pnl.gov/ bse/portal.
文摘The theoretical calculation and spectroscopic experiments indicate a kind of triangular three bonding supramolecular complexes CBr4…X^-…-H-C, which consist of carbon tetrabromide, halide, and protic solvent molecule (referring to dichloromethane, chloroform and acetonitrile), can be formed in solution. The strength of halogen and hydrogen bonds in the triangular complexes using halide as common acceptor obeys the order of iodide〉bromide〉chloride. The halogen and hydrogen bonds work weak-cooperatively. Charge transfer bands of halogen bonding complexes between CBra and halide are observed in UV-Vis absorption spectroscopy in three solvents, and then the stoichiometry of 1:1, formation constants K and molar extinction coefficients ε of the halogen bonding complexes are obtained by Benesi-Hildebrand method. The K and ε show a dependence on the solvent dielectric constant and, on the whole, obey an order of iodide〉bromide〉chloride in the same solvents. Furthermore, the C-H vibrational frequencies of solvent molecules vary obviously with the addition of halide, which indicates the C-H…X- interaction. The experimental data indicate that the halogen bond and hydrogen bond coexist by sharing a common halide acceptor as predicted by calculation.
文摘Modelling and simulation has become an important tool in research and development. Simulation models are used to develop better understanding of the internal properties and impact of various parameters on the final quality of the product or process. Simulation model reduces the number of experiments and saves the wastage of material, time and money and are widely used in automobile industry, aircrafts manufacturing, process engineering, training for military, health care sector and many more. Wood Plastic Composite (WPC) is a bio-composite made by mixing wood fibers and plastic granules together at high temperature by compression molding or injection molding. A large quantity of WPC is rejected due to poor quality and low mechanical strength. There is a need to improve the understanding of the wood plastic composites, with both theoretical and experimental analysis. The impact of various parameters and processing conditions on the final product is not known to the industry people, due to less simulation models in this field. A new simulation software WPC Soft is developed to predict the mechanical and thermal properties of WPC. The software can predict the mechanical and thermal properties of WPC. The simulation results were validated with the experimental results and it was observed that the predicted values are quite close to the experimental values and with the further refining of the model, prediction can be further improved. The present simulation software can be easily used by the industry people and it requires very little knowledge of computers or modeling for its operation.
基金We thank Science & Technology Center in Ukraine and Shota Rustaveli National Science Foundation. The work was implemented with the support of Science & Technology Center in Ukraine Project Proposal #5461 and Shota Rustaveli National Science Foundation Grant #30/06.
文摘Terms of synthesis were defined for the creation of new generation chelate fertilizers and for their experimental testing. Glutamine acid and citric acid containing chelate citrates of the general formulae M.gI.HL'nHO were synthesized, where, M = Mn, Zn, Fe, Co, Cu; n = 0; 1; 1.5; gl-glutamine acid; HL-citric acid anion. Identity and composition of synthesized compounds were determined by microelemental analysis, melting temperature and X-ray diffraction analysis. X-ray diffraction analysis of the compounds and glutamine acid and citric acid (H4L) was used to determine their crystalline structure and roentgen-amorphous and iso-structural orders. Their solubility was studied in various solvents.
基金Sponsored by the National Natural Science Foundation of China for Distinguished Young Scholars(Grant No. 50525516)the National Key Technology R&D Program (Grant No. 2006BAE04B03)Program for New Century Excellent Talents in University
文摘The comers with small radii on cross sections are crucial for forming hydroformed components with polygonal sections. In this paper, warm hydroforming experiments of AZ61A magnesium alloy tubes were cartied out to study the forming regularity of round comers by using a demonstration part with square sections. Effects of temperature on radius forming, thinning ratio distribution and microstructure were revealed and a component with relative outer corner radius of 3.0 was obtained by warm hydroforming at 240℃. The minimum thickness of the formed square section was located in the transition position between the corner and the straight wall. The thinning ratio of the round corner increased with the increase of forming temperature. Fotmability of the magnesium tube was improved by raising temperature under the effect of dynamic recrystallization at 240℃.
文摘The QUENCH experimental programme at Karlsruhe under severe accident conditions, but while the geometry is still Institute of Technology investigates heat-up and reflooding of a core mainly rod-like. The recent QUENCH-ACM series of experiments, comprising QUENCH-12 (El 10 cladding alloy), -14 (M5 alloy) and -15 (Zirlo^TM alloy), together with QUENCH-06 (reference case, Zircaloy-4 alloy) addressed the effect of alternative cladding materials on oxidation and quenching under similar conditions. Superficial inspection of the experimental results reveals only minor differences in the thermal and oxidation response, except for the much larger hydrogen release during reflood in QUENCH-12. Post-test calculations were performed using a version of SCDAP/RELAP5/MOD3.2, modified to represent the QUENCH facility and to invoke alternative oxidation correlations. The calculations agreed rather well with experiments QUENCH-06, -14 and -15, but the significant hydrogen release during reflood in QUENCH-12 was not captured. Closer examination of the experimental results reveals further differences between QUENCH-12 which may be linked to breakaway oxidation of the E110 cladding. The analyses support the heuristic observation that there was no major difference between the influence of Zircaloy-4, M5 or ZirloTM, but the E-110 exhibited a contrasting behaviour with a consequent impact on the reflooding.
文摘Often masonry walls of historical buildings are subject to rising damp effects due to capillary or rain infiltrations. In the time, their cyclic action produces decay and delamination of historical plasters. An experimental laboratory procedure for the pre-qualification of repair mortars is described. Long-term plaster delamination frequently occurs because of the mechanical incompatibility of new repair mortars. The tested mortars are suitable for new dehumidified plasters applied to historical masonry walls. Compression static tests were carried out on composite specimens stSone block-repair mortar, which specific geometry can test the de-bonding process of mortar in adherence with historical masonry structure. A numerical simulation based on the cohesive crack model was used to follow the experimental data, in order to describe the evolutionary phenomenon of de-bonding as a function of a small number of parameters. This method supplies useful indication for selecting the product that is best in keeping with the mechanical characteristics of the historical material, thereby avoiding errors associated with materials that are not mechanically compatible. Currently, the methodology is being used at Sacro Monte di Varallo Special Natural Reserve (UNESCO heritage site) in Piedmont (Italy).
基金The support of the Italian Ministry of the University and Scientific Research(MIUR)under the PRIN project number 2007R3AXLH is greatly acknowledged
文摘The present paper focuses on the analysis of a synthetic jet device (with a zero net massflow rate) on a separated boundary layer. Separation has been obtained on a flat plate installed within a converging-diverging test section specifically designed to attain a local velocity distribution typical of a high-lift LPT blade. Both experimental and numerical investigations have been carried out. Unsteady RANS results have been compared with experiments in terms of time-averaged velocity and turbulence intensity distributions. Two different Reynolds number cases have been investigated, namely Re = 200,000 and Re = 70,000, which characterize low-pressure turbine operating conditions during take-off/landing and cruise. A range of synthetic jet aerodynamic parameters (Strouhal number and blowing ratio) has been tested in order to analyze the features of control-separated boundary layer interaction for the aforementioned Reynolds numbers.
文摘Surface recombination represents a handicap for high-efficiency solar cells. This is especially important for nanowire array solar cells, where the surface-to-volume ratio is greatly enhanced. Here, the effect of different passivation materials on the effective recombination and on the device performance is experimentally analyzed. Our solar cells are large area top-down axial n-p junction silicon nanowires fabricated by means of Near-Field Phase-Shift Lithography (NF-PSL). We report an efficiency of 9.9% for the best cell, passivated with a SiO2/SiNx stack. The impact of the presence of a surface fixed charge density at the silicon/oxide interface is studied.
文摘This comment will review and discuss recent results obtained with the use of calorimetry in assessing molecular information from complex phenomena such as association in surfactant/polymer mixtures. These examples were selected to support the view that it is possible to ally the great sensitivity of modem calorimeters with carefully planned experiments and, sometimes, ancillary techniques in order to derive detailed information on molecular interactions.
基金supported by the National Basic Research Program of China (Grant No. 2009CB219507)
文摘Gas hydrate decomposition in sediments involves complicated multiphase flow and heat and mass transfer processes because of heat absorption by solid hydrates. Factors affecting gas hydrate decomposition in sediments include sediment type, mineral composition, pore size distribution, particle size, pore water composition, hydrate saturation distribution, initial formation pressure and temperature and cement characteristics. In this paper, experimental simulations of gas hydrate decomposition are carried out on an artificial core to investigate the effects of initial pressure and temperature, particle size and pore size. The experiments show that the characteristics of gas hydrate decomposition in sediments differ completely from those in a pure water system. The decomposition rate of hydrate sediments increases with the initial pressure increasing and decreasing temperatures. Furthermore, the decomposition rate of hydrate sediments decreases with decreasing particle size and increasing pore size.