The supply of cadmium from soil to plant roots mainly depends on the diffusion process. This work was conducted tostudy the effect of some soil properties on cadmium diffusion coefficient (D) in soil. Measurements we...The supply of cadmium from soil to plant roots mainly depends on the diffusion process. This work was conducted tostudy the effect of some soil properties on cadmium diffusion coefficient (D) in soil. Measurements were made using the Shofield and Graham-Bryce's isotopic labelling method. Cadmium diffusion coefficients varied from 10 ̄(-7) to 10 ̄(-9) cm ̄2s ̄(-1),Higher values were observed in acid sandy soils and lower values in calcareous clay soils. Liming an acid soil resulted in a sub-stantial decrease of D. Addition of cadmium as nitrate salt generally increased D, while addition of sewage sludge and organ-ic matter resulted in a significant decrease of cadmium diffusion. The rhizospheric activity also induced a moderate reduction in D. The relationships between D 10 ̄(-9)cm ̄2s ̄(-1)) on the one hand and soil PH, moisture (Mc, g kg ̄(-1)), organic matter (OM, gkg ̄1 ), clay (Cy, g kg ̄(-1)) and cadmium content (Cd, mg kg ̄(-1)) on the other were obtained by the multigle regression:D=182. 1-29.g1 pH+0.210Mc-0.303OM+0.011Cy+1.64Cd (R ̄2=0.859,n=22 ).展开更多
In large cities, news about fires in buildings are powered by problems such as old wiring and no maintenance. Accidents with chemicals and human error, which when added to the different characteristics of each fire an...In large cities, news about fires in buildings are powered by problems such as old wiring and no maintenance. Accidents with chemicals and human error, which when added to the different characteristics of each fire and structures can generate the factors causing these disasters. The gradual rise in temperature causes a different effect in mortar and concrete parts, verifying the change in coloring provided to loss of mechanical strength and surface crumbling, cracking and disintegration of the structure itself. This paper presents a case study in which a building that is located in the metropolitan region of Recife was exposed to a fire situation. The metropolitan region of Recife is composed of several old buildings that by virtue of their age may have delayed construction methods, and may expose the fragility of the concrete used in its construction on a fire situation. The concrete structures are recognized by the good resistance to fire because of the thermal characteristics of the material, however, the temperature rise in the concrete elements in characteristic causes a reduction in strength and modulus of elasticity of the material, the loss in stiffness leading to polyphase degradation of reinforced concrete, structural parts can lead to ruin, but when properly sized and executed, the concrete can serve as a proactive agent to be exposed to high temperatures, as the same may be subjected to high temperatures accidentally or they may be part of their normal work.展开更多
文摘The supply of cadmium from soil to plant roots mainly depends on the diffusion process. This work was conducted tostudy the effect of some soil properties on cadmium diffusion coefficient (D) in soil. Measurements were made using the Shofield and Graham-Bryce's isotopic labelling method. Cadmium diffusion coefficients varied from 10 ̄(-7) to 10 ̄(-9) cm ̄2s ̄(-1),Higher values were observed in acid sandy soils and lower values in calcareous clay soils. Liming an acid soil resulted in a sub-stantial decrease of D. Addition of cadmium as nitrate salt generally increased D, while addition of sewage sludge and organ-ic matter resulted in a significant decrease of cadmium diffusion. The rhizospheric activity also induced a moderate reduction in D. The relationships between D 10 ̄(-9)cm ̄2s ̄(-1)) on the one hand and soil PH, moisture (Mc, g kg ̄(-1)), organic matter (OM, gkg ̄1 ), clay (Cy, g kg ̄(-1)) and cadmium content (Cd, mg kg ̄(-1)) on the other were obtained by the multigle regression:D=182. 1-29.g1 pH+0.210Mc-0.303OM+0.011Cy+1.64Cd (R ̄2=0.859,n=22 ).
文摘In large cities, news about fires in buildings are powered by problems such as old wiring and no maintenance. Accidents with chemicals and human error, which when added to the different characteristics of each fire and structures can generate the factors causing these disasters. The gradual rise in temperature causes a different effect in mortar and concrete parts, verifying the change in coloring provided to loss of mechanical strength and surface crumbling, cracking and disintegration of the structure itself. This paper presents a case study in which a building that is located in the metropolitan region of Recife was exposed to a fire situation. The metropolitan region of Recife is composed of several old buildings that by virtue of their age may have delayed construction methods, and may expose the fragility of the concrete used in its construction on a fire situation. The concrete structures are recognized by the good resistance to fire because of the thermal characteristics of the material, however, the temperature rise in the concrete elements in characteristic causes a reduction in strength and modulus of elasticity of the material, the loss in stiffness leading to polyphase degradation of reinforced concrete, structural parts can lead to ruin, but when properly sized and executed, the concrete can serve as a proactive agent to be exposed to high temperatures, as the same may be subjected to high temperatures accidentally or they may be part of their normal work.