期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于分块二维线性鉴别分析的人脸识别
1
作者 裴佳佳 古辉 《计算机系统应用》 2009年第9期81-84,73,共5页
基于2DLDA方法,提出了一种基于图像分块的二维线性鉴别分析(M2DLDA)的人脸识别方法。该方法首先对原始人脸图像进行必要的预处理后进行分块,再对分块后的子图像分别采用2DLDA方法进行特征提取,最后用最小距离分类器进行识别。该方法的优... 基于2DLDA方法,提出了一种基于图像分块的二维线性鉴别分析(M2DLDA)的人脸识别方法。该方法首先对原始人脸图像进行必要的预处理后进行分块,再对分块后的子图像分别采用2DLDA方法进行特征提取,最后用最小距离分类器进行识别。该方法的优点:分块后能有效的抽取人脸图像的局部特征有利于分类;降低了2DLDA方法提取的特征矩阵的维数;特征提取是基于图像矩阵的,抽取方便快速。在ORL人脸数据库上的实验结果表明:该方法在识别性能上优于2DLDA方法。 展开更多
关键词 特征提取 二维线性鉴别分析 分块二维线性鉴别分析 人脸识别
下载PDF
分块NSA在人脸识别上的应用 被引量:1
2
作者 童啸 《电子设计工程》 2011年第15期156-159,共4页
基于非参数子空间分析(nonparametric subspace analysis,NSA)方法,提出了分块NSA方法并将应用于人脸识别上。分块NSA方法首先对图像矩阵进行分块,对分块得到的子图像矩阵再利用NSA进行鉴别分析。这样做有以下2个优点:1)能有效地抽取图... 基于非参数子空间分析(nonparametric subspace analysis,NSA)方法,提出了分块NSA方法并将应用于人脸识别上。分块NSA方法首先对图像矩阵进行分块,对分块得到的子图像矩阵再利用NSA进行鉴别分析。这样做有以下2个优点:1)能有效地抽取图像的局部特征,对人脸表情和光照条件变化较大的图像表现尤为突出;2)与NSA相比,由于使用子图像矩阵,分块NSA可以避免使用奇异值分解理论,过程简便。此外,NSA是分块NSA的特殊情况。在ORL和XM2VTS人脸库上验证了该方法在识别性能上优于NSA和分块LDA方法。 展开更多
关键词 分块线性鉴别分析 非参数子空间分析 特征提取 分块非参数子空间分析 人脸识别
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部