期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
分块PCA加权与FLD结合的血流图红外人脸识别方法 被引量:3
1
作者 谢志华 伍世虔 +2 位作者 方志军 杨寿渊 卢宇 《小型微型计算机系统》 CSCD 北大核心 2009年第10期2069-2072,共4页
传统红外人脸识别方法都是基于全局特征的识别方法,为了充分利用人脸的局部特征,提出一种基于血流图的分块PCA+FLD的红外人脸识别方法.通过血流模型把红外温谱图转换成血流图,能够利用人体的生物特征增加样本之间的类间距,并减少样本之... 传统红外人脸识别方法都是基于全局特征的识别方法,为了充分利用人脸的局部特征,提出一种基于血流图的分块PCA+FLD的红外人脸识别方法.通过血流模型把红外温谱图转换成血流图,能够利用人体的生物特征增加样本之间的类间距,并减少样本之间类内距.基于各个分块的类间距与类内距比值大小(RD),分块PCA加权可以自适应地提取更适合识别的人脸局部特征,同时还可以缓解Fisher线性判别的小样本问题(零空间问题).实验表明,分块PCA+FLD并不会减少整体特征提取中有用识别信息的提取,而且可以突出局部特征对识别贡献,提高本方法的识别率. 展开更多
关键词 红外人脸识别 血流图 fisher线性别(FLD) 分块PCA
下载PDF
基于块双向Fisher线性判别分析人脸识别 被引量:4
2
作者 崔鹏 张雪婷 《光电子.激光》 EI CAS CSCD 北大核心 2016年第4期421-428,共8页
为解决二维Fisher线性判别(2DFLD)分析需要较多系数用以表示图像的特征阵、只考虑了图像的列间相关性从而忽略行间相关性以及作为全局特征提取方法可能会失去一些重要的局部特征等问题,提出一种基于块双向二维Fisher线性判别分析(B2DFLD... 为解决二维Fisher线性判别(2DFLD)分析需要较多系数用以表示图像的特征阵、只考虑了图像的列间相关性从而忽略行间相关性以及作为全局特征提取方法可能会失去一些重要的局部特征等问题,提出一种基于块双向二维Fisher线性判别分析(B2DFLD)算法。首先利用块图像获取保持重要局部信息;然后基于行列双向投影,获取提取特征信息;最后计算特征阵的Frobenius距离,并进行分类。在ORL、YALE与FERET人脸数据库上进行了实验,并同传统的8种人脸识别方法比较。实验结果表明,在确定图像块大小、改变训练样本数以及特征维数的前提下,本文方法的最好识别率都高于93.08,平均误识率高于0.15,明显优于其他方法,表明本文方法对有光照、表情以及遮挡的人脸图像识别具有较高的鲁棒性。 展开更多
关键词 特征提取 二维fisher线性别(2DFLD) 人脸识别 图像分块
原文传递
融合单演二值编码的人脸表情识别算法
3
作者 夏笑笑 应自炉 褚文瑾 《五邑大学学报(自然科学版)》 CAS 2014年第2期47-52,共6页
为提高人脸表情识别算法的识别率和鲁棒性,本文提出一种融合单演二值编码的人脸表情识别算法.该算法运用单演信号分析提取多尺度单演振幅、相位和方向三个正交互补的分量,使用单演二值编码对该三种分量的每个尺度进行编码及划分为多个... 为提高人脸表情识别算法的识别率和鲁棒性,本文提出一种融合单演二值编码的人脸表情识别算法.该算法运用单演信号分析提取多尺度单演振幅、相位和方向三个正交互补的分量,使用单演二值编码对该三种分量的每个尺度进行编码及划分为多个矩形块子区域,并采用分块Fisher线性判别对其降维并提高识别率.实验结果表明:所提算法比传统人脸表情识别算法具有更高的识别率.此外,遮挡对比实验证明了所提算法比传统算法有更好的鲁棒性. 展开更多
关键词 单演二值编码 分块fisher线性判 融合 鲁棒性
下载PDF
基于多特征组合的交通标识识别 被引量:5
4
作者 齐朗晔 张重阳 何成东 《计算机工程与科学》 CSCD 北大核心 2015年第4期776-782,共7页
在分块核函数的基础上提出了基于多个图像特征进行组合决策的识别方法。该算法先对交通标识图像提取两个不同的特征,即HOG特征和基于子模式组合的分块核函数特征,然后针对不同特征构造相应的分类器,最后对这几个分类器的输出采用投票机... 在分块核函数的基础上提出了基于多个图像特征进行组合决策的识别方法。该算法先对交通标识图像提取两个不同的特征,即HOG特征和基于子模式组合的分块核函数特征,然后针对不同特征构造相应的分类器,最后对这几个分类器的输出采用投票机制进行决策融合。在德国交通标识数据库上的实验结果表明,该方法相比单特征识别具有更高的识别准确率。 展开更多
关键词 fisher线性鉴别分析 特征组合 分块核方法 交通标识识别
下载PDF
Analysis and Experiments on Two Linear Discriminant Analysis Methods
5
作者 Xu Yong Jin Zhong +2 位作者 Yang Jingyu Tang Zhengmin Zhao Yingnan 《工程科学(英文版)》 2006年第3期37-47,共11页
Foley-Sammon linear discriminant analysis (FSLDA) and uncorrelated linear discriminant analysis (ULDA) are two well-known kinds of linear discriminant analysis. Both ULDA and FSLDA search the kth discriminant vector i... Foley-Sammon linear discriminant analysis (FSLDA) and uncorrelated linear discriminant analysis (ULDA) are two well-known kinds of linear discriminant analysis. Both ULDA and FSLDA search the kth discriminant vector in an n-k+1 dimensional subspace, while they are subject to their respective constraints. Evidenced by strict demonstration, it is clear that in essence ULDA vectors are the covariance-orthogonal vectors of the corresponding eigen-equation. So, the algorithms for the covariance-orthogonal vectors are equivalent to the original algorithm of ULDA, which is time-consuming. Also, it is first revealed that the Fisher criterion value of each FSLDA vector must be not less than that of the corresponding ULDA vector by theory analysis. For a discriminant vector, the larger its Fisher criterion value is, the more powerful in discriminability it is. So, for FSLDA vectors, corresponding to larger Fisher criterion values is an advantage. On the other hand, in general any two feature components extracted by FSLDA vectors are statistically correlated with each other, which may make the discriminant vectors set at a disadvantageous position. In contrast to FSLDA vectors, any two feature components extracted by ULDA vectors are statistically uncorrelated with each other. Two experiments on CENPARMI handwritten numeral database and ORL database are performed. The experimental results are consistent with the theory analysis on Fisher criterion values of ULDA vectors and FSLDA vectors. The experiments also show that the equivalent algorithm of ULDA, presented in this paper, is much more efficient than the original algorithm of ULDA, as the theory analysis expects. Moreover, it appears that if there is high statistical correlation between feature components extracted by FSLDA vectors, FSLDA will not perform well, in spite of larger Fisher criterion value owned by every FSLDA vector. However, when the average correlation coefficient of feature components extracted by FSLDA vectors is at a low level, the performance of FSLDA are comparable with ULDA. 展开更多
关键词 fisher Foley-Sammon线性别分析 相关系数 不相关线性别分析 别向量
下载PDF
融合MBP和EPMOD的人脸识别 被引量:3
6
作者 闫海停 王玲 +1 位作者 李昆明 刘机福 《中国图象图形学报》 CSCD 北大核心 2014年第1期85-91,共7页
目的单演信号分析在人脸识别中得到了日益广泛的应用,然而其中的单演方向作为一种极为重要的几何信息却未能得到充分的利用。为此,提出了一种新的增强型单演方向差分算子对单演方向进行特征提取,进而提出了融合MBP(单演二值模式)和EPMOD... 目的单演信号分析在人脸识别中得到了日益广泛的应用,然而其中的单演方向作为一种极为重要的几何信息却未能得到充分的利用。为此,提出了一种新的增强型单演方向差分算子对单演方向进行特征提取,进而提出了融合MBP(单演二值模式)和EPMOD(增强型单演方向差分模式)的人脸识别方法。方法首先对图像进行多种尺度的单演滤波并分别提取图片的MBP特征和EPMOD特征,然后使用BFLD(基于分块的Fisher线性判别)分别对两种特征进行降维并增强两种特征的分类能力。最后,在得分级别上对两种特征进行融合并进行分类识别。结果在ORL和CAS-PEAL人脸库上的实验表明,本文提出的EPMOD算法具有更小的时间复杂度和空间复杂度的前提下具有与MBP、LGBP相当甚至更好的识别效果。结论本文提出了一种有效的人脸特征提取方法,实验表明本文提出的将EPMOD和MBP特征进行融合的方法能够显著地提高算法的最终识别率。 展开更多
关键词 人脸识别 单演滤波 单演局部二值模式(MBP) 增强型单演方向差分模式(EPMOD) 分块fisher线性判 别(BFLD)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部