We experimentally studied the effect of crack aperture on P-wave velocity, amplitude, anisotropy and dispersion. Experimental models were constructed based on Hudson's theory. Six crack models were embedded with equa...We experimentally studied the effect of crack aperture on P-wave velocity, amplitude, anisotropy and dispersion. Experimental models were constructed based on Hudson's theory. Six crack models were embedded with equal-radius penny-shaped crack inclusions in each layer. The P-wave velocity and amplitude were measured parallel and perpendicular to the layers of cracks at frequencies of 0.1 MHz to 1 MHz. The experiments show that as the crack aperture increases from 0.l mm to 0.34 mm, the amplitude of the P-waves parallel to the crack layers decreases linearly with increasing frequency and the P-wave velocity dispersion varies from 1.5% to 2.1%, whereas the amplitude of the P-wave perpendicular to the crack layers decreases quadratically with increasing frequency and the velocity dispersion varies from 1.9% to 4.7%. The variation in the velocity dispersion parallel and perpendicular to the cracks intensifies the anisotropy dispersion of the P-waves in the crack models (6.7% to 83%). The P-wave dispersion strongly depends on the scattering characteristics of the crack apertures.展开更多
To study the stiffness distribution of girder and the method to identify modal parameters of cable-stayed bridge, a simplified dynamical finite element method model named three beams model was established for the gird...To study the stiffness distribution of girder and the method to identify modal parameters of cable-stayed bridge, a simplified dynamical finite element method model named three beams model was established for the girder with double ribs. Based on the simplified model four stiffness formulae were deduced according to Hamilton principle. These formulae reflect well the contribution of the flexural, shearing, free torsion and restricted torsion deformation, respectively. An identification method about modal parameters was put forward by combining method of peak value and power spectral density according to modal test under ambient excitation. The dynamic finite element method analysis and modal test were carried out in a long-span concrete cable-stayed bridge. The results show that the errors of frequencies between theoretical analysis and test results are less than 10% mostly, and the most important modal parameters for cable-stayed bridge are determined to be the longitudinal floating mode, the first vertical flexural mode and the first torsional mode, which demonstrate that the method of stiffness distribution for three beams model is accurate and method to identify modal parameters is effective under ambient excitation modal test.展开更多
Four ZSM-5 zeolite catalysts with different Si/Al ratios for the catalytic cracking of C4 fractions to produce ethylene and propylene were prepared in this study.First,the adsorption isotherms of pure n-butane and but...Four ZSM-5 zeolite catalysts with different Si/Al ratios for the catalytic cracking of C4 fractions to produce ethylene and propylene were prepared in this study.First,the adsorption isotherms of pure n-butane and butene-1 and their mixtures on these catalysts at 300K and p=0—100kPa were measured using the intelligent gra- vimetric analyzer.The experimental results indicate that the presence of Al can significantly affect the adsorption of butene-1 than that of n-butane on ZSM-5 zeolites.Then,the double Langmuir(DL)model was applied to study the pure gas adsorption on ZSM-5 zeolites for pure n-butane and butene-1.By combining the DL model with the ideal adsorbed solution theory(IAST),the IAST-DL model was applied to model the butene-1(1)/n-butane(2)binary mixture adsorption on ZSM-5 zeolites with different Si/Al ratios.The calculated results are in good agreement with the experimental data,indicating that the IAST-DL model is effective for the present systems.Finally,the adsorp- tion over a wide range of variables was predicted at low pressure and 300K by the model proposed.It is found that the selectivity of butene-1 over n-butane increases linearly with the decrease of Si/Al ratio.A correlation between the selectivity and Si/Al ratio of the sample was proposed at 300K and p=0.08MPa.展开更多
This paper presents a new theoretical model to determine the optimal axial preload of a spindle system, for challenging the traditional method which relies heavily on experience of engineers. The axial preloading stif...This paper presents a new theoretical model to determine the optimal axial preload of a spindle system, for challenging the traditional method which relies heavily on experience of engineers. The axial preloading stiffness was treated as the sum of the spindle modal stiffness and the framework elastic stiffness, based on a novel concept that magnitude of preloads can be controlled by measuring the resonant frequency of a spindle system. By employing an example of a certain type of aircraft simulating rotary table, the modal stiffness was measured on the Agilent 35670A Dynamic Signal Analyzer by experimental modal analysis. The equivalent elastic stiffness was simulated by both finite element analysis in ANSYS? and a curve fitting in MATLAB?. Results showed that the static preloading stiffness of the spindle was 7.2125×107 N/m, and that the optimal preloading force was 120.0848 N. Practical application proved the feasibility of our method.展开更多
Currently many methods of implementation are available if we want the com'seware to be used in e-learning interactivly with media rich. This paper focuses the attention to the relevance between various implementation...Currently many methods of implementation are available if we want the com'seware to be used in e-learning interactivly with media rich. This paper focuses the attention to the relevance between various implementations in presentation adopted in the courseware and students' learning styles, in order to consider what kind of implemenation or description is preferable to what kind of students or order to support their leaming. We carded out the canonical correlation analysis for this purpose and investigated this relevance on the basis of the experiments. Main results of the experiment are given with detailed disoussion.展开更多
Experimental research was conducted to study the structural behaviors of a steel roof truss model without fire-proof coating under pool fire conditions. The data of temperature distribution and displacements of typica...Experimental research was conducted to study the structural behaviors of a steel roof truss model without fire-proof coating under pool fire conditions. The data of temperature distribution and displacements of typical members were obtained. It is found that the temperature distribution of environment inside the structure, which is found to be in accordance with the multi-zone model with height, has a decisive effect on the tempera^tre evolution of steel members. Besides, it can also be observed that due to the restriction and coordination among the truss members in the localized fire, the maximum relative deflection, which occurs at the mid-span of the top chord, is relatively slight and has not exceeded 1 mm under experimental conditions. On the other hand, the column experiences a notable thermal expansion during the test. Then, a finite element model is presented and validated by the test results.展开更多
This paper presents a new method for simulating the evolution of a gully head in a loess catchment with cellular automata(CA) based on the Fisher discriminant. The experimental site is an indoor loess catchment that w...This paper presents a new method for simulating the evolution of a gully head in a loess catchment with cellular automata(CA) based on the Fisher discriminant. The experimental site is an indoor loess catchment that was constructed in a fixed-intensity rainfall erosion test facility. Nine high-resolution digital elevation model(DEM) data sets were gathered by close range photogrammetry during different phases of the experiment. To simulate the evolution of the catchment gully head, we assumed the following. First, the 5th and 6th DEM data sets were used as a data source for acquiring the location of the catchment gully head and for obtaining spatial variables with GIS spatial analysis tools. Second, the Fisher discriminant was used to calculate the weight of the spatial variables to determine the transition probabilities. Third, CA model was structured to simulate the evolution of the gully head by iterative looping. The status of the cell in the CA models was dynamically updated at the end of each loop to obtain realistic results. Finally, the nearest neighbor, G-function, K-function, Moran′s I and fractal indexes were used to evaluate the model results. Overall, the CA model can be used to simulate the evolution of a loess gully head. The experiment demonstrated the advantages of the CA model which can simulate the dynamic evolution of gully head evolution in a catchment.展开更多
Swelling and shrinkage due to moisture-change is one of the characteristics of the expansive soil,which is similar to the behavior of most materials under thermal effect,If the deformation is restricted,stress in expa...Swelling and shrinkage due to moisture-change is one of the characteristics of the expansive soil,which is similar to the behavior of most materials under thermal effect,If the deformation is restricted,stress in expansive soil is caused by the swell-shrinking.The stress is defined as "moisture-change stress" and is adopted to analyze swell-shrinkage deformation based on the elasticity mechanics theory.The state when the total stress becomes equal to the soil tensile strength is considered as the cracking criterion as moisture-change increases.Then,the initial cracking mechanism due to evaporation is revealed as follows:Different rates of moisture loss at different depths result in greater shrinkage deformation on the surface while there is smaller shrinkage deformation at the underlayer in expansive soil;cracks will grow when the nonuniform shrinkage deformation increases to a certain degree.A theoretical model is established,which may be used to calculate the stress caused by moisture-change.The depth of initial cracks growing is predicted by the proposed model in expansive soil,A series of laboratory tests are carried out by exposing expansive soil samples with different moisture-changes.The process of crack propagation is investigated by resistivity method.The test results show good consistency with the predicted results by the proposed theoretical model.展开更多
To find out the effect of the shape of fused taper region on the optical fiber coupler, the fiber couplers were fabricated at different drawing speeds with a six-axes fiber coupler machine. The results, which were obt...To find out the effect of the shape of fused taper region on the optical fiber coupler, the fiber couplers were fabricated at different drawing speeds with a six-axes fiber coupler machine. The results, which were obtained fi'om the shape of fused taper region measured with microscope, show that there is a close correlation between the cone angle and optical performance of fiber coupler. High-performance fiber coupler cannot be obtained until rheological shape is controlled accurately. The numerical analysis model, which was built based on generalized Maxwell viscoelastic theory, is resolved with ANSYS software. The calculated results accord with the experimental data. It can apply a theoretic basis for forecasting the shape of fiber coupler fabricated under the conditions of different technological parameters.展开更多
A fully flexible potential model for carbon dioxide has been developed to predict the vapor-liquid coexistence properties using the NVT-Gibbs ensemble Monte Carlo technique(GEMC).The average absolute deviation between...A fully flexible potential model for carbon dioxide has been developed to predict the vapor-liquid coexistence properties using the NVT-Gibbs ensemble Monte Carlo technique(GEMC).The average absolute deviation between our simulation and the literature experimental data for saturated liquid and vapor densities is 0.3% and 2.0%,respectively.Compared with the experimental data,our calculated results of critical properties(7.39 MPa,304.04 K,and 0.4679 g?cm-3) are acceptable and are better than those from the rescaling the potential parameters of elementary physical model(EPM2).The agreement of our simulated densities of supercritical carbon dioxide with the experimental data is acceptable in a wide range of pressure and temperature.The radial distribution function estimated at the supercritical conditions suggests that the carbon dioxide is a nonlinear molecule with the C O bond length of 0.117 nm and the O C O bond angle of 176.4°,which are consistent with Car-Parrinello molecular-dynamics(CPMD),whereas the EPM2 model shows large deviation at supercritical state.The predicted self-diffusion coefficients are in agreement with the experiments.展开更多
Based on the theory of attribute identification, a weight-variable identification model was put forward on top coal caving effect in fully mechanized top coal caving face. Contribution value of all kinds of evaluation...Based on the theory of attribute identification, a weight-variable identification model was put forward on top coal caving effect in fully mechanized top coal caving face. Contribution value of all kinds of evaluation factor of the caving coal and waste were used to determine weight coefficient. And then comprehensively estimated it by the given credible degree value. This kind of method can not only classify for attribute identification, but also can classify it into sub-classification according to comprehensive score compositor that of the same attribute. The comprehensive estimate result of plane and solid caving experiments shows that the result is true, credible, simple and that is not only one of the effective method of theory study, but also can be regarded as a quantitative examine method of the top coal caving effect in scene.展开更多
In order to study the variation of machine tools’dynamic characteristics in the manufacturing space,a Kriging approximate model is proposed.Finite element method(FEM)is employed on the platform of ANSYS to establish ...In order to study the variation of machine tools’dynamic characteristics in the manufacturing space,a Kriging approximate model is proposed.Finite element method(FEM)is employed on the platform of ANSYS to establish finite element(FE)model with the dynamic characteristic of combined interface for a milling machine,which is newly designed for producing aero engine blades by a certain enterprise group in China.The stiffness and damping of combined interfaces are adjusted by using adaptive simulated annealing algorithm with the optimizing software of iSIGHT in the process of FE model update according to experimental modal analysis(EMA)results.The Kriging approximate model is established according to the finite element analysis results utilizing orthogonal design samples by taking into account of the range of configuration parameters.On the basis of the Kriging approximate model,the response surfaces between key response parameter and configuration parameters are obtained.The results indicate that configuration parameters have great effects on dynamic characteristics of machine tools,and the Kriging approximate model is an effective and rapid method for estimating dynamic characteristics of machine tools in the manufacturing space.展开更多
基金supported by the Major National Project Program (No.2011ZX05007-006)
文摘We experimentally studied the effect of crack aperture on P-wave velocity, amplitude, anisotropy and dispersion. Experimental models were constructed based on Hudson's theory. Six crack models were embedded with equal-radius penny-shaped crack inclusions in each layer. The P-wave velocity and amplitude were measured parallel and perpendicular to the layers of cracks at frequencies of 0.1 MHz to 1 MHz. The experiments show that as the crack aperture increases from 0.l mm to 0.34 mm, the amplitude of the P-waves parallel to the crack layers decreases linearly with increasing frequency and the P-wave velocity dispersion varies from 1.5% to 2.1%, whereas the amplitude of the P-wave perpendicular to the crack layers decreases quadratically with increasing frequency and the velocity dispersion varies from 1.9% to 4.7%. The variation in the velocity dispersion parallel and perpendicular to the cracks intensifies the anisotropy dispersion of the P-waves in the crack models (6.7% to 83%). The P-wave dispersion strongly depends on the scattering characteristics of the crack apertures.
基金Project(50608008) supported by the National Natural Science Foundation of Chinaproject(20050536002) supported by the Specialized Research Fund for the Doctoral Program of Higher Education
文摘To study the stiffness distribution of girder and the method to identify modal parameters of cable-stayed bridge, a simplified dynamical finite element method model named three beams model was established for the girder with double ribs. Based on the simplified model four stiffness formulae were deduced according to Hamilton principle. These formulae reflect well the contribution of the flexural, shearing, free torsion and restricted torsion deformation, respectively. An identification method about modal parameters was put forward by combining method of peak value and power spectral density according to modal test under ambient excitation. The dynamic finite element method analysis and modal test were carried out in a long-span concrete cable-stayed bridge. The results show that the errors of frequencies between theoretical analysis and test results are less than 10% mostly, and the most important modal parameters for cable-stayed bridge are determined to be the longitudinal floating mode, the first vertical flexural mode and the first torsional mode, which demonstrate that the method of stiffness distribution for three beams model is accurate and method to identify modal parameters is effective under ambient excitation modal test.
基金Supported by the National Natural Science Foundation of China (Nos.20236010,20476004) and China Petroleum & Chemical Corporation (No.X504023).
文摘Four ZSM-5 zeolite catalysts with different Si/Al ratios for the catalytic cracking of C4 fractions to produce ethylene and propylene were prepared in this study.First,the adsorption isotherms of pure n-butane and butene-1 and their mixtures on these catalysts at 300K and p=0—100kPa were measured using the intelligent gra- vimetric analyzer.The experimental results indicate that the presence of Al can significantly affect the adsorption of butene-1 than that of n-butane on ZSM-5 zeolites.Then,the double Langmuir(DL)model was applied to study the pure gas adsorption on ZSM-5 zeolites for pure n-butane and butene-1.By combining the DL model with the ideal adsorbed solution theory(IAST),the IAST-DL model was applied to model the butene-1(1)/n-butane(2)binary mixture adsorption on ZSM-5 zeolites with different Si/Al ratios.The calculated results are in good agreement with the experimental data,indicating that the IAST-DL model is effective for the present systems.Finally,the adsorp- tion over a wide range of variables was predicted at low pressure and 300K by the model proposed.It is found that the selectivity of butene-1 over n-butane increases linearly with the decrease of Si/Al ratio.A correlation between the selectivity and Si/Al ratio of the sample was proposed at 300K and p=0.08MPa.
文摘This paper presents a new theoretical model to determine the optimal axial preload of a spindle system, for challenging the traditional method which relies heavily on experience of engineers. The axial preloading stiffness was treated as the sum of the spindle modal stiffness and the framework elastic stiffness, based on a novel concept that magnitude of preloads can be controlled by measuring the resonant frequency of a spindle system. By employing an example of a certain type of aircraft simulating rotary table, the modal stiffness was measured on the Agilent 35670A Dynamic Signal Analyzer by experimental modal analysis. The equivalent elastic stiffness was simulated by both finite element analysis in ANSYS? and a curve fitting in MATLAB?. Results showed that the static preloading stiffness of the spindle was 7.2125×107 N/m, and that the optimal preloading force was 120.0848 N. Practical application proved the feasibility of our method.
文摘Currently many methods of implementation are available if we want the com'seware to be used in e-learning interactivly with media rich. This paper focuses the attention to the relevance between various implementations in presentation adopted in the courseware and students' learning styles, in order to consider what kind of implemenation or description is preferable to what kind of students or order to support their leaming. We carded out the canonical correlation analysis for this purpose and investigated this relevance on the basis of the experiments. Main results of the experiment are given with detailed disoussion.
基金Project(50706059) supported by the National Natural Science Foundation of ChinaProject(HZ2009-KF05) supported by Open Fund of State Key Laboratory of Fire Science of University of Science and Technology in ChinaProject supported by the Fundamental Research Funds for the Central Universities of China
文摘Experimental research was conducted to study the structural behaviors of a steel roof truss model without fire-proof coating under pool fire conditions. The data of temperature distribution and displacements of typical members were obtained. It is found that the temperature distribution of environment inside the structure, which is found to be in accordance with the multi-zone model with height, has a decisive effect on the tempera^tre evolution of steel members. Besides, it can also be observed that due to the restriction and coordination among the truss members in the localized fire, the maximum relative deflection, which occurs at the mid-span of the top chord, is relatively slight and has not exceeded 1 mm under experimental conditions. On the other hand, the column experiences a notable thermal expansion during the test. Then, a finite element model is presented and validated by the test results.
基金National Natural Science Foundation of China(No.41171320,41101349)National Innovation and Entrepreneurship Program(No.201210319025)
文摘This paper presents a new method for simulating the evolution of a gully head in a loess catchment with cellular automata(CA) based on the Fisher discriminant. The experimental site is an indoor loess catchment that was constructed in a fixed-intensity rainfall erosion test facility. Nine high-resolution digital elevation model(DEM) data sets were gathered by close range photogrammetry during different phases of the experiment. To simulate the evolution of the catchment gully head, we assumed the following. First, the 5th and 6th DEM data sets were used as a data source for acquiring the location of the catchment gully head and for obtaining spatial variables with GIS spatial analysis tools. Second, the Fisher discriminant was used to calculate the weight of the spatial variables to determine the transition probabilities. Third, CA model was structured to simulate the evolution of the gully head by iterative looping. The status of the cell in the CA models was dynamically updated at the end of each loop to obtain realistic results. Finally, the nearest neighbor, G-function, K-function, Moran′s I and fractal indexes were used to evaluate the model results. Overall, the CA model can be used to simulate the evolution of a loess gully head. The experiment demonstrated the advantages of the CA model which can simulate the dynamic evolution of gully head evolution in a catchment.
基金Project(2006BAB04A10) supported by the National Science and Technology Pillar Program during the 11th Five Year Plan of ChinaProject(51008117) supported by the National Natural Science Foundation of China
文摘Swelling and shrinkage due to moisture-change is one of the characteristics of the expansive soil,which is similar to the behavior of most materials under thermal effect,If the deformation is restricted,stress in expansive soil is caused by the swell-shrinking.The stress is defined as "moisture-change stress" and is adopted to analyze swell-shrinkage deformation based on the elasticity mechanics theory.The state when the total stress becomes equal to the soil tensile strength is considered as the cracking criterion as moisture-change increases.Then,the initial cracking mechanism due to evaporation is revealed as follows:Different rates of moisture loss at different depths result in greater shrinkage deformation on the surface while there is smaller shrinkage deformation at the underlayer in expansive soil;cracks will grow when the nonuniform shrinkage deformation increases to a certain degree.A theoretical model is established,which may be used to calculate the stress caused by moisture-change.The depth of initial cracks growing is predicted by the proposed model in expansive soil,A series of laboratory tests are carried out by exposing expansive soil samples with different moisture-changes.The process of crack propagation is investigated by resistivity method.The test results show good consistency with the predicted results by the proposed theoretical model.
基金Project (50605063) supported by the National Natural Science Foundation of ChinaProject(NCET-040753) supported by New Century Excellent Talents in University, ChinaProject (20050533037) supported by the Doctoral Program of Higher Education, China
文摘To find out the effect of the shape of fused taper region on the optical fiber coupler, the fiber couplers were fabricated at different drawing speeds with a six-axes fiber coupler machine. The results, which were obtained fi'om the shape of fused taper region measured with microscope, show that there is a close correlation between the cone angle and optical performance of fiber coupler. High-performance fiber coupler cannot be obtained until rheological shape is controlled accurately. The numerical analysis model, which was built based on generalized Maxwell viscoelastic theory, is resolved with ANSYS software. The calculated results accord with the experimental data. It can apply a theoretic basis for forecasting the shape of fiber coupler fabricated under the conditions of different technological parameters.
基金Supported by the National Natural Science Foundation of China (50573063), the Program for New Century Excellent Talents in University of the State Ministry of Education (NCET-05-0566) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (2005038401).
文摘A fully flexible potential model for carbon dioxide has been developed to predict the vapor-liquid coexistence properties using the NVT-Gibbs ensemble Monte Carlo technique(GEMC).The average absolute deviation between our simulation and the literature experimental data for saturated liquid and vapor densities is 0.3% and 2.0%,respectively.Compared with the experimental data,our calculated results of critical properties(7.39 MPa,304.04 K,and 0.4679 g?cm-3) are acceptable and are better than those from the rescaling the potential parameters of elementary physical model(EPM2).The agreement of our simulated densities of supercritical carbon dioxide with the experimental data is acceptable in a wide range of pressure and temperature.The radial distribution function estimated at the supercritical conditions suggests that the carbon dioxide is a nonlinear molecule with the C O bond length of 0.117 nm and the O C O bond angle of 176.4°,which are consistent with Car-Parrinello molecular-dynamics(CPMD),whereas the EPM2 model shows large deviation at supercritical state.The predicted self-diffusion coefficients are in agreement with the experiments.
文摘Based on the theory of attribute identification, a weight-variable identification model was put forward on top coal caving effect in fully mechanized top coal caving face. Contribution value of all kinds of evaluation factor of the caving coal and waste were used to determine weight coefficient. And then comprehensively estimated it by the given credible degree value. This kind of method can not only classify for attribute identification, but also can classify it into sub-classification according to comprehensive score compositor that of the same attribute. The comprehensive estimate result of plane and solid caving experiments shows that the result is true, credible, simple and that is not only one of the effective method of theory study, but also can be regarded as a quantitative examine method of the top coal caving effect in scene.
基金Project(2009ZX04001-073)supported by the Important National Science&Technology Specific Projects of ChinaProject(51105025)supported by the National Natural Science Foundation of China
文摘In order to study the variation of machine tools’dynamic characteristics in the manufacturing space,a Kriging approximate model is proposed.Finite element method(FEM)is employed on the platform of ANSYS to establish finite element(FE)model with the dynamic characteristic of combined interface for a milling machine,which is newly designed for producing aero engine blades by a certain enterprise group in China.The stiffness and damping of combined interfaces are adjusted by using adaptive simulated annealing algorithm with the optimizing software of iSIGHT in the process of FE model update according to experimental modal analysis(EMA)results.The Kriging approximate model is established according to the finite element analysis results utilizing orthogonal design samples by taking into account of the range of configuration parameters.On the basis of the Kriging approximate model,the response surfaces between key response parameter and configuration parameters are obtained.The results indicate that configuration parameters have great effects on dynamic characteristics of machine tools,and the Kriging approximate model is an effective and rapid method for estimating dynamic characteristics of machine tools in the manufacturing space.