[ Objective] To identify a novel snoRNA gene in Arabidopsis thalianan. [ Method ] Genome sequence of Arabidopsis thalianan was screened by using bioinformatics methods, and the sequence structure, organization form an...[ Objective] To identify a novel snoRNA gene in Arabidopsis thalianan. [ Method ] Genome sequence of Arabidopsis thalianan was screened by using bioinformatics methods, and the sequence structure, organization form and function of typical candidate gene were analyzed. [ Result] The identified snR95 box H/ACA snoRNA had conservative component and structural features of box C/D snoRNA family, possessed two more than 10 nt long rRNA antisense elements. The result revealed that the novel snoRNA is a partial counterpart of the rice Z270, named box C/D snoRNA -AthZ270. [ Conclusion ] Z270 snoRNA in Arabidopsis thalianan has different function with common snoRNA.展开更多
[ Objective] The study aimed to clone and identify Na^+/H^+ antiporter genes in maize, and provided the information for characterizing the function of such genes in abiotic stress tolerance of maize. Method The in ...[ Objective] The study aimed to clone and identify Na^+/H^+ antiporter genes in maize, and provided the information for characterizing the function of such genes in abiotic stress tolerance of maize. Method The in silico cloning, RT-PCR, and bioinformatics analysis were used in this study. Result By in sifico cloning, a plasma membrane Na^+/H^+ antiporter gene, named as ZmSOS1 (EMBL accession No. BN001309), was cloned from maize ( Zea mays L. ). ZmSOS1 has an open reading frame (ORF) of 3 411 bp which encoded a protein of 1 136 amino acids. By multiple sequence alignment analysis, it showed the predicated peptide of ZmSOS1 were 61% and 82% identities in amino acids to the plasma membrane Na^+/H^+ antiporter AtSOS1 and OsSOS1, respectively. The RT-PCR analysis revealed that ZmSOS1 could be significantly up-regulated by salt stress, which indicated ZmSOS1 might play a role in salt tolerance of maize. Conclusion ZmSOS1 is a putative plasma membrane Na^+/H^+ antiporter gene and may play a role in abiotic stress tolerance of maize.展开更多
Quantum cryptography and quantum search algorithm are considered as two important research topics in quantum information science.An asymmetrical quantum encryption protocol based on the properties of quantum one-way f...Quantum cryptography and quantum search algorithm are considered as two important research topics in quantum information science.An asymmetrical quantum encryption protocol based on the properties of quantum one-way function and quantum search algorithm is proposed.Depending on the no-cloning theorem and trapdoor one-way functions of the publickey,the eavesdropper cannot extract any private-information from the public-keys and the ciphertext.Introducing key-generation randomized logarithm to improve security of our proposed protocol,i.e.,one privatekey corresponds to an exponential number of public-keys.Using unitary operations and the single photon measurement,secret messages can be directly sent from the sender to the receiver.The security of the proposed protocol is proved that it is informationtheoretically secure.Furthermore,compared the symmetrical Quantum key distribution,the proposed protocol is not only efficient to reduce additional communication,but also easier to carry out in practice,because no entangled photons and complex operations are required.展开更多
To explore the biological characteristics of Vascular plant One-Zinc finger(VOZ)gene family in Populus trichocarpa,this paper used bioinformatics to analyze the nucleotide sequences and protein sequences of four membe...To explore the biological characteristics of Vascular plant One-Zinc finger(VOZ)gene family in Populus trichocarpa,this paper used bioinformatics to analyze the nucleotide sequences and protein sequences of four members of VOZ gene family of P.trichocarpa.The results showed that the four PtVOZ genes of P.trichocarpa were evenly distributed on four chromosomes.The length and molecular weight of the encoded protein were almost the same,and the subcellular localization was located in the nucleus,belonging to the unstable acidic hydrophilic non-aliphatic soluble protein.The gene structures were all in the patterns of 4 exons and 3 introns.The proportion order of PtVOZ transcription factor secondary structure components was random coil>αhelix>extended strand>βsheets,and the tertiary structure was very similar in spatial conformation.The phylogenetic tree analysis showed that P.trichocarpa was more closely related to VOZ transcription factors of dicotyledons.The four PtVOZ genes of P.trichocarpa were expressed in seedlings and different tissues,but there were differences in the expression intensity.This study provided a necessary theoretical basis for further exploring the molecular biological function of PtVOZ genes.展开更多
Pyropia haitanensis(T.J.Chang et B.F.Zheng) N.Kikuchi et M.Miyata( Porphyra haitanensis) is an economically important genus that is cultured widely in China.P.haitanensis is cultured on a larger scale than Pyropia yez...Pyropia haitanensis(T.J.Chang et B.F.Zheng) N.Kikuchi et M.Miyata( Porphyra haitanensis) is an economically important genus that is cultured widely in China.P.haitanensis is cultured on a larger scale than Pyropia yezoensis,making up an important part of the total production of cultivated Pyropia in China.However,the majority of molecular mechanisms underlying the physiological processes of P.haitanensis remain unknown.P.haitanensis could utilize inorganic carbon and the sporophytes of P.haitanensis might possess a PCK-type C 4-like carbon-fixation pathway.To identify micro RNAs and their probable roles in sporophyte and gametophyte development,we constructed and sequenced small RNA libraries from sporophytes and gametophytes of P.haitanensis.Five micro RNAs were identified that shared no sequence homology with known micro RNAs.Our results indicated that P.haitanensis might posses a complex s RNA processing system in which the novel micro RNAs act as important regulators of the development of different generations of P.haitanensis.展开更多
Polyploids are organisms with three or more complete chromosome sets. Polyploidization is widespread in plants and animals, and is an important mechanism of speciation. Genome sequencing and related molecular systemat...Polyploids are organisms with three or more complete chromosome sets. Polyploidization is widespread in plants and animals, and is an important mechanism of speciation. Genome sequencing and related molecular systematics and bioinformatics studies on plants and animals in recent years support the view that species have been shaped by whole genome duplication during evolution. The stability of polyploids depends on rapid genome recombination and changes in gene expression after formation. The formation of polyploids and subsequent diploidization are important aspects in long-term evolution. Polyploids can be formed in various ways. Among them, hybrid organisms formed by distant hybridization could produce unreduced gametes and thus generate offspring with doubled chromosomes, which is a fast, efficient method of polyploidization. The formation of fertile polyploids not only promoted the interflow of genetic materials among species and enriched the species diversity, but also laid the foundation for polyploidy breeding. The study of polyploids has both important theoretical significance and valuable applications. The production and application of polyploidy breeding have brought remarkable economic and social benefits.展开更多
Microarray and deep sequencing technologies have provided unprecedented opportunities for mapping genome mutations,RNA transcripts,transcription factor binding,and histone modifications at high resolution at the genom...Microarray and deep sequencing technologies have provided unprecedented opportunities for mapping genome mutations,RNA transcripts,transcription factor binding,and histone modifications at high resolution at the genome-wide level.This has revolutionized the way in which transcriptomes,regulatory networks and epigenetic regulations have been studied and large amounts of heterogeneous data have been generated.Although efforts are being made to integrate these datasets unbiasedly and efficiently,how best to do this still remains a challenge.Here we review major impacts of high-throughput genome-wide data generation,their relevance to human diseases,and various bioinformatics approaches for data integration.Finally,we provide a case study on inflammatory diseases.展开更多
Neural information processing is tightly coupled to both energy consumption and derivation from substrates.In this study,the energy function of the neuron during the action potential(AP)is described and analyzed.It ha...Neural information processing is tightly coupled to both energy consumption and derivation from substrates.In this study,the energy function of the neuron during the action potential(AP)is described and analyzed.It has been observed that energy consumption during the AP does not match predictions of the conventional theory of neural energy dynamics.On short time scales,neural energy expenditure shifts between positive and negative phases.During the AP,the energy source switches from neuronal stores(positive expenditure or net consumption)to exploitation of external substrates,specifically the glucose and oxygen carried in cerebral blood(the negative consumption phase).Based on the idea of reductionism,this paper demonstrates how ion channels,membrane pumps and transporters,ionotropic and metabotropic receptor signaling pathways,astrocyte glycolysis and the production lactate,and the glutamate-glutamine cycle all serve to relate cerebral blood flow and neuronal metabolism to neuronal activity and so maintain neuronal energy charge during the AP.展开更多
Archaea,the third domain of life,are interesting organisms to study from the aspects of molecular and evolutionary biology.Archaeal cells have a unicellular ultrastructure without a nucleus,resembling bacterial cells,...Archaea,the third domain of life,are interesting organisms to study from the aspects of molecular and evolutionary biology.Archaeal cells have a unicellular ultrastructure without a nucleus,resembling bacterial cells,but the proteins involved in genetic information processing pathways,including DNA replication,transcription,and translation,share strong similarities with those of Eukaryota.Therefore,archaea provide useful model systems to understand the more complex mechanisms of genetic information processing in eukaryotic cells.Moreover,the hyperthermophilic archaea provide very stable proteins,which are especially useful for the isolation of replisomal multicomplexes,to analyze their structures and functions.This review focuses on the history,current status,and future directions of archaeal DNA replication studies.展开更多
基金Supported by Natural Science Project Establishment Subject of Jiangxi Science & Technology Normal University(KY2008ZY03 )Teaching Research Provincial Project Establishment Subject of Higher Education of Jiangxi Province (JXJG-13-29)~~
文摘[ Objective] To identify a novel snoRNA gene in Arabidopsis thalianan. [ Method ] Genome sequence of Arabidopsis thalianan was screened by using bioinformatics methods, and the sequence structure, organization form and function of typical candidate gene were analyzed. [ Result] The identified snR95 box H/ACA snoRNA had conservative component and structural features of box C/D snoRNA family, possessed two more than 10 nt long rRNA antisense elements. The result revealed that the novel snoRNA is a partial counterpart of the rice Z270, named box C/D snoRNA -AthZ270. [ Conclusion ] Z270 snoRNA in Arabidopsis thalianan has different function with common snoRNA.
基金Supported by the Natural Science Foundation of the Department of Educationof Jiangsu Province(07KJD180168)the Doctoral ScienceStarting Foundation of Nantong UniversityAnd the Openning Subjectof Plant Functional Genomics Key Laboratory of Jiangsu Province~~
文摘[ Objective] The study aimed to clone and identify Na^+/H^+ antiporter genes in maize, and provided the information for characterizing the function of such genes in abiotic stress tolerance of maize. Method The in silico cloning, RT-PCR, and bioinformatics analysis were used in this study. Result By in sifico cloning, a plasma membrane Na^+/H^+ antiporter gene, named as ZmSOS1 (EMBL accession No. BN001309), was cloned from maize ( Zea mays L. ). ZmSOS1 has an open reading frame (ORF) of 3 411 bp which encoded a protein of 1 136 amino acids. By multiple sequence alignment analysis, it showed the predicated peptide of ZmSOS1 were 61% and 82% identities in amino acids to the plasma membrane Na^+/H^+ antiporter AtSOS1 and OsSOS1, respectively. The RT-PCR analysis revealed that ZmSOS1 could be significantly up-regulated by salt stress, which indicated ZmSOS1 might play a role in salt tolerance of maize. Conclusion ZmSOS1 is a putative plasma membrane Na^+/H^+ antiporter gene and may play a role in abiotic stress tolerance of maize.
基金This work was supported in part by the program for Innovation Team Building at Institutions of Higher Education in Chongqing under Grant No.KJTD201310,the Scientific and Technological Research Program of Chongqing Municipal Education Commission of China under Grant KJ120513,Natural Science Foundation Project of CQ CSTC of P.R.China under Grant No.cstc2011jjA40031
文摘Quantum cryptography and quantum search algorithm are considered as two important research topics in quantum information science.An asymmetrical quantum encryption protocol based on the properties of quantum one-way function and quantum search algorithm is proposed.Depending on the no-cloning theorem and trapdoor one-way functions of the publickey,the eavesdropper cannot extract any private-information from the public-keys and the ciphertext.Introducing key-generation randomized logarithm to improve security of our proposed protocol,i.e.,one privatekey corresponds to an exponential number of public-keys.Using unitary operations and the single photon measurement,secret messages can be directly sent from the sender to the receiver.The security of the proposed protocol is proved that it is informationtheoretically secure.Furthermore,compared the symmetrical Quantum key distribution,the proposed protocol is not only efficient to reduce additional communication,but also easier to carry out in practice,because no entangled photons and complex operations are required.
文摘To explore the biological characteristics of Vascular plant One-Zinc finger(VOZ)gene family in Populus trichocarpa,this paper used bioinformatics to analyze the nucleotide sequences and protein sequences of four members of VOZ gene family of P.trichocarpa.The results showed that the four PtVOZ genes of P.trichocarpa were evenly distributed on four chromosomes.The length and molecular weight of the encoded protein were almost the same,and the subcellular localization was located in the nucleus,belonging to the unstable acidic hydrophilic non-aliphatic soluble protein.The gene structures were all in the patterns of 4 exons and 3 introns.The proportion order of PtVOZ transcription factor secondary structure components was random coil>αhelix>extended strand>βsheets,and the tertiary structure was very similar in spatial conformation.The phylogenetic tree analysis showed that P.trichocarpa was more closely related to VOZ transcription factors of dicotyledons.The four PtVOZ genes of P.trichocarpa were expressed in seedlings and different tissues,but there were differences in the expression intensity.This study provided a necessary theoretical basis for further exploring the molecular biological function of PtVOZ genes.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2012AA10A406)the National Natural Science Foundation of China(Nos.41176134,41306151)the China Strategic Leading Special Science and Technology Academy(No.XDA11020404)
文摘Pyropia haitanensis(T.J.Chang et B.F.Zheng) N.Kikuchi et M.Miyata( Porphyra haitanensis) is an economically important genus that is cultured widely in China.P.haitanensis is cultured on a larger scale than Pyropia yezoensis,making up an important part of the total production of cultivated Pyropia in China.However,the majority of molecular mechanisms underlying the physiological processes of P.haitanensis remain unknown.P.haitanensis could utilize inorganic carbon and the sporophytes of P.haitanensis might possess a PCK-type C 4-like carbon-fixation pathway.To identify micro RNAs and their probable roles in sporophyte and gametophyte development,we constructed and sequenced small RNA libraries from sporophytes and gametophytes of P.haitanensis.Five micro RNAs were identified that shared no sequence homology with known micro RNAs.Our results indicated that P.haitanensis might posses a complex s RNA processing system in which the novel micro RNAs act as important regulators of the development of different generations of P.haitanensis.
基金supported by the National High Technology Research and Development Program of China (Grant No. 2011AA100403)the National Natural Science Foundation of China (Grant No. 30930071)+2 种基金the National Special Fund for Scientific Research in Public Benefits (Grant No. 200903046)the Specially-appointed Professor for Lotus Scholars Program of Hunan Province (Grant No. 080648)the Doctoral Fund Priority Development Area (Grant No. 20114306130001)
文摘Polyploids are organisms with three or more complete chromosome sets. Polyploidization is widespread in plants and animals, and is an important mechanism of speciation. Genome sequencing and related molecular systematics and bioinformatics studies on plants and animals in recent years support the view that species have been shaped by whole genome duplication during evolution. The stability of polyploids depends on rapid genome recombination and changes in gene expression after formation. The formation of polyploids and subsequent diploidization are important aspects in long-term evolution. Polyploids can be formed in various ways. Among them, hybrid organisms formed by distant hybridization could produce unreduced gametes and thus generate offspring with doubled chromosomes, which is a fast, efficient method of polyploidization. The formation of fertile polyploids not only promoted the interflow of genetic materials among species and enriched the species diversity, but also laid the foundation for polyploidy breeding. The study of polyploids has both important theoretical significance and valuable applications. The production and application of polyploidy breeding have brought remarkable economic and social benefits.
文摘Microarray and deep sequencing technologies have provided unprecedented opportunities for mapping genome mutations,RNA transcripts,transcription factor binding,and histone modifications at high resolution at the genome-wide level.This has revolutionized the way in which transcriptomes,regulatory networks and epigenetic regulations have been studied and large amounts of heterogeneous data have been generated.Although efforts are being made to integrate these datasets unbiasedly and efficiently,how best to do this still remains a challenge.Here we review major impacts of high-throughput genome-wide data generation,their relevance to human diseases,and various bioinformatics approaches for data integration.Finally,we provide a case study on inflammatory diseases.
基金supported by the National Natural Science Foundation of China(Grant Nos.1123200511002055)the Ministry of Education Doctoral Foundation(Grant No.20120074110020)
文摘Neural information processing is tightly coupled to both energy consumption and derivation from substrates.In this study,the energy function of the neuron during the action potential(AP)is described and analyzed.It has been observed that energy consumption during the AP does not match predictions of the conventional theory of neural energy dynamics.On short time scales,neural energy expenditure shifts between positive and negative phases.During the AP,the energy source switches from neuronal stores(positive expenditure or net consumption)to exploitation of external substrates,specifically the glucose and oxygen carried in cerebral blood(the negative consumption phase).Based on the idea of reductionism,this paper demonstrates how ion channels,membrane pumps and transporters,ionotropic and metabotropic receptor signaling pathways,astrocyte glycolysis and the production lactate,and the glutamate-glutamine cycle all serve to relate cerebral blood flow and neuronal metabolism to neuronal activity and so maintain neuronal energy charge during the AP.
基金supported in part by the Human Frontier Science Programseveral research grants from Ministry of Education,Culture, Sports, Science, and Technology of Japan+1 种基金the Japan New Energy and Industrial Technology Development Organizationthe Japan Science and Technology Agency
文摘Archaea,the third domain of life,are interesting organisms to study from the aspects of molecular and evolutionary biology.Archaeal cells have a unicellular ultrastructure without a nucleus,resembling bacterial cells,but the proteins involved in genetic information processing pathways,including DNA replication,transcription,and translation,share strong similarities with those of Eukaryota.Therefore,archaea provide useful model systems to understand the more complex mechanisms of genetic information processing in eukaryotic cells.Moreover,the hyperthermophilic archaea provide very stable proteins,which are especially useful for the isolation of replisomal multicomplexes,to analyze their structures and functions.This review focuses on the history,current status,and future directions of archaeal DNA replication studies.