Seismic wave velocity is one of the most important processing parameters of seismic data,which also determines the accuracy of imaging.The conventional method of velocity analysis involves scanning through a series of...Seismic wave velocity is one of the most important processing parameters of seismic data,which also determines the accuracy of imaging.The conventional method of velocity analysis involves scanning through a series of equal intervals of velocity,producing the velocity spectrum by superposing energy or similarity coefficients.In this method,however,the sensitivity of the semblance spectrum to change of velocity is weak,so the resolution is poor.In this paper,to solve the above deficiencies of conventional velocity analysis,a method for obtaining a high-resolution velocity spectrum based on weighted similarity is proposed.By introducing two weighting functions,the resolution of the similarity spectrum in time and velocity is improved.Numerical examples and real seismic data indicate that the proposed method provides a velocity spectrum with higher resolution than conventional methods and can separate cross reflectors which are aliased in conventional semblance spectrums;at the same time,the method shows good noise-resistibility.展开更多
We give here an overview of the orbital-flee density functional theory that is used for modeling atoms and molecules. We review typical approximations to the kinetic energy, exchange-correlation corrections to the k...We give here an overview of the orbital-flee density functional theory that is used for modeling atoms and molecules. We review typical approximations to the kinetic energy, exchange-correlation corrections to the kinetic and Hartree energies, and constructions of the pseudopotentials. We discuss numerical discretizations for the orbital-free methods and include several numerical results for illustrations.展开更多
Performing cluster analysis on molecular conformation is an important way to find the representative conformation in the molecular dynamics trajectories.Usually,it is a critical step for interpreting complex conformat...Performing cluster analysis on molecular conformation is an important way to find the representative conformation in the molecular dynamics trajectories.Usually,it is a critical step for interpreting complex conformational changes or interaction mechanisms.As one of the density-based clustering algorithms,find density peaks(FDP)is an accurate and reasonable candidate for the molecular conformation clustering.However,facing the rapidly increasing simulation length due to the increase in computing power,the low computing efficiency of FDP limits its application potential.Here we propose a marginal extension to FDP named K-means find density peaks(KFDP)to solve the mass source consuming problem.In KFDP,the points are initially clustered by a high efficiency clustering algorithm,such as K-means.Cluster centers are defined as typical points with a weight which represents the cluster size.Then,the weighted typical points are clustered again by FDP,and then are refined as core,boundary,and redefined halo points.In this way,KFDP has comparable accuracy as FDP but its computational complexity is reduced from O(n^(2))to O(n).We apply and test our KFDP method to the trajectory data of multiple small proteins in terms of torsion angle,secondary structure or contact map.The comparing results with K-means and density-based spatial clustering of applications with noise show the validation of the proposed KFDP.展开更多
Cognitive Radio (CR) can use the fre- quency band allocated to a Primary User (PU) on the premise that it will prevent significant of avoiding causing great interference to the PU. In this paper, we consider a wid...Cognitive Radio (CR) can use the fre- quency band allocated to a Primary User (PU) on the premise that it will prevent significant of avoiding causing great interference to the PU. In this paper, we consider a wideband CR system where the Secondary User (SU) mini- raises its interference to the PU by jointly al- locating the optimal sensing threshold and sub- carrier power. A multi-parameter optimization problem is formulated to obtain the joint opt- imal allocation by alternating direction opti- mization, which minimises the total interfer- ence to the PU over all of the subcarriers sub- ject to the constraints on the throughput, Bit Error Rate (BER) and maximal total power of the SU, the subcarrier rate and interference power of the PU, and the false alarm and mis- detection probabilities of each subcarrier. The simulation results show that the proposed joint allocation algorithm can achieve the desired mitigation on the interference to the PU at the different subcarrier gains.展开更多
The adsorption of phenol, p-nitrophenol and 2,4-dinitrophenol in aqueous phase on activated carbon is performed by evaluating factors such as the pH of the solution, it is found that the value in adsorbate molecule is...The adsorption of phenol, p-nitrophenol and 2,4-dinitrophenol in aqueous phase on activated carbon is performed by evaluating factors such as the pH of the solution, it is found that the value in adsorbate molecule is upper and lower of its respective pKa. Likewise, the heterogeneity of the adsorbent solid is evaluated using commercial activated carbon, which is modified by means of oxidation with HNO3 and reduction with H2 fluxing at high temperature, treatments represent variatians in textural properties of solid which changed equally the superficial chemistry of the same. The major concentration of retained plLenol compound in some samples of carbon is produced in pH values which the solute is basically molecular.展开更多
This paper presents an efficient numerical scheme for calculating the periodic motion of a harmonically forced piecewise linear oscillator very accurately. The scheme is based on the shooting technique with the tradi...This paper presents an efficient numerical scheme for calculating the periodic motion of a harmonically forced piecewise linear oscillator very accurately. The scheme is based on the shooting technique with the traditional numerical Poincare mapping and its Jacobian replaced by the piecewise analytic ones. Thus, the scheme gets rid of the requirement of the current schemes for an assumed order of the oscillator trajectory passing through different linear regions. The numerical examples in the paper demonstrate that the new scheme, compared with the current schemes, enables one to cope with more complicated dynamics of harmonically forced piecewise linear oscillators.展开更多
The electronic transport properties of oligoacenes sandwiched between two Au(111) surfaces with serial and parrallel configurations were investigeted by using a fully self-consistent nonequilibrium Green's function...The electronic transport properties of oligoacenes sandwiched between two Au(111) surfaces with serial and parrallel configurations were investigeted by using a fully self-consistent nonequilibrium Green's function method combined with density functional calculations. This theoretical results show that the conductivity of oligoacenes with both sandwiched configurations at low bias voltage is mainly determined by the tail of the transmission peak from the perturbed highest occupied molecular orbital. When the molecular length increases, the zero-bias voltage conductance G(0) of oligoacenes with serial configuration neither follows Magoga's exponential law nor displays the even-odd oscillation effect, while the G(O) of the oligoacenes sandwiched with parallel configuration monotonically increases. The reduction of energy gaps, the alignment of the Fermi level, and the spatial distribution of the perturbed molecular orbitals are used to self-consistently explore the transport mechanism through oligoacenes.展开更多
In this paper, the solution of Chebyshev equation with its argument being greater than 1 is obtained. The initial value of the derivative of the solution is the expression of magnetization, which is valid for any spin...In this paper, the solution of Chebyshev equation with its argument being greater than 1 is obtained. The initial value of the derivative of the solution is the expression of magnetization, which is valid for any spin quantum number S. The Chebyshev equation is transformed from an ordinary differential equation obtained when we dealt with Heisenberg model, in order to calculate all three components of magnetization, by many-body Green's function under random phase approximation. The Chebyshev functions with argument being greater than 1 are discussed. This paper shows that the Chebyshev polynomials with their argument being greater than 1 have their physical application.展开更多
The authors numerically investigated the characteristics of surface plasmons excited on a thin metal grating placed in planer or conical mounting. After formulating the problem, the solution method, Yasuura's method ...The authors numerically investigated the characteristics of surface plasmons excited on a thin metal grating placed in planer or conical mounting. After formulating the problem, the solution method, Yasuura's method (a modal expansion approach with least-squares boundary matching) was described. Although the grating is periodic in one direction, coupling between TE and TM waves Occurs because arbitrary incidence is assumed. This requires the employment of both TE and TM vector modal functions in the analysis. Numerical computations showed: (l) the excitation of surface plasmons with total or partial absorption of incident light; (2) the resonance character of the coefficient of an evanescent order that couples the plasmon surface wave; (3) the field profile and Poynting's vector. The plasmons excited on the surfaces of a thin metal grating are classified into three types: SISP, SRSP, and LRSP, different from each other in the feature of field profile and energy flow. In addition, the eigenvalue of a plasmon mode was obtained by solving a sequence of diffraction problems with complex-valued angles of incidence and using the quasi-Newton algorithm to predict the real angle of incidence at which the absorption occurs.展开更多
The interaction between a solute atom and an extended dislocation was investigated using a continuum approximation method with force multipoles.The dislocation core structure of extended dislocation was modeled with t...The interaction between a solute atom and an extended dislocation was investigated using a continuum approximation method with force multipoles.The dislocation core structure of extended dislocation was modeled with the Peierls-Nabarro model discretized with a number of infinitesimal Volterra dislocations.The interaction energy and force between a nickel solute atom and perfect and extended dislocation in copper were successfully calculated using the force multipoles.The results clearly show that the core structure of extended dislocation weakens the interaction with solute atoms.The interaction energy and force for extended dislocations are almost the half of those for perfect dislocations.展开更多
The soliton hierarchy associated with a Schrodinger type spectral problem with four potentials is decomposed into a class of new finite-dimensional Hamiltonian systems by using the nonlinearized approach. It is worth ...The soliton hierarchy associated with a Schrodinger type spectral problem with four potentials is decomposed into a class of new finite-dimensional Hamiltonian systems by using the nonlinearized approach. It is worth to point that the solutions for the soliton hierarchy are reduced to solving the compatible Hamiltonian systems of ordinary differential equations.展开更多
Most traditional ground roll separation methods utilize only the difference in geometric characteristics between the ground roll and the refl ection wave to separate them.When the geometric characteristics of data are...Most traditional ground roll separation methods utilize only the difference in geometric characteristics between the ground roll and the refl ection wave to separate them.When the geometric characteristics of data are complex,these methods often lead to damage of the reflection wave or incompletely suppress the ground roll.To solve this problem,we proposed a novel ground roll separation method via threshold filtering and constraint of seismic wavelet support in the curvelet domain;this method is called the TFWS method.First,curvelet threshold fi ltering(CTF)is performed by using the diff erence of the curvelet coeffi cient of the refl ection wave and the ground roll in the location,scale,and slope of their events to eliminate most of the ground roll.Second,the degree of the local damaged signal or the local residual noise is estimated as the local weighting coeffi cient.Under the constraints of seismic wavelet and local weighting coeffi cient,the L1 norm of the refl ection coeffi cient is minimized in the curvelet domain to recover the damaged refl ection wave and attenuate the residual noise.The local weighting coeffi cient in this paper is obtained by calculating the local correlation coeffi cient between the high-pass fi ltering result and the CFT result.We applied the TFWS method to simulate and fi eld data and compared its performance with that of frequency and wavenumber filtering and the CFT method.Results show that the TFWS method can attenuate not only linear ground roll,aliased ground roll,and nonlinear noise but also strong noise with a slope close to the refl ection events.展开更多
We study the fully entangled fraction (FEF) of arbitrary mixed states. New upper bounds of FEF are derived. These upper bounds make complements on the estimation of the value of FEF. For weakly mixed quantum states,...We study the fully entangled fraction (FEF) of arbitrary mixed states. New upper bounds of FEF are derived. These upper bounds make complements on the estimation of the value of FEF. For weakly mixed quantum states, an upper bound is shown to be very tight to the exact value of FEF.展开更多
By virtue of the properties of bipartite entangled state representation we derive the common eigenvector of the parametric Hamiltonian and the two-mode number-difference operator. This eigenvector is superposition of ...By virtue of the properties of bipartite entangled state representation we derive the common eigenvector of the parametric Hamiltonian and the two-mode number-difference operator. This eigenvector is superposition of some definite two-mode Foek states with the coefficients being proportional to hypergeometric functions. The Gauss contiguous relation of hypergeometrie functions is used to confirm the formal solution.展开更多
基金funded by the National Key Research and Development Plan (No. 2017YFB0202905)China Petroleum Corporation Technology Management Department “Deep-ultra-deep weak signal enhancement technology based on seismic physical simulation experiments”(No. 2017-5307073-000008-01)。
文摘Seismic wave velocity is one of the most important processing parameters of seismic data,which also determines the accuracy of imaging.The conventional method of velocity analysis involves scanning through a series of equal intervals of velocity,producing the velocity spectrum by superposing energy or similarity coefficients.In this method,however,the sensitivity of the semblance spectrum to change of velocity is weak,so the resolution is poor.In this paper,to solve the above deficiencies of conventional velocity analysis,a method for obtaining a high-resolution velocity spectrum based on weighted similarity is proposed.By introducing two weighting functions,the resolution of the similarity spectrum in time and velocity is improved.Numerical examples and real seismic data indicate that the proposed method provides a velocity spectrum with higher resolution than conventional methods and can separate cross reflectors which are aliased in conventional semblance spectrums;at the same time,the method shows good noise-resistibility.
基金supported by the National Science Foundation of China under the grant 10425105the National Basic Research Program under the grant 2005CB321704.
文摘We give here an overview of the orbital-flee density functional theory that is used for modeling atoms and molecules. We review typical approximations to the kinetic energy, exchange-correlation corrections to the kinetic and Hartree energies, and constructions of the pseudopotentials. We discuss numerical discretizations for the orbital-free methods and include several numerical results for illustrations.
基金Professor Hong Yu at Intelligent Fishery Innovative Team(No.C202109)in School of Information Engineering of Dalian Ocean University for her support of this workfunded by the National Natural Science Foundation of China(No.31800615 and No.21933010)。
文摘Performing cluster analysis on molecular conformation is an important way to find the representative conformation in the molecular dynamics trajectories.Usually,it is a critical step for interpreting complex conformational changes or interaction mechanisms.As one of the density-based clustering algorithms,find density peaks(FDP)is an accurate and reasonable candidate for the molecular conformation clustering.However,facing the rapidly increasing simulation length due to the increase in computing power,the low computing efficiency of FDP limits its application potential.Here we propose a marginal extension to FDP named K-means find density peaks(KFDP)to solve the mass source consuming problem.In KFDP,the points are initially clustered by a high efficiency clustering algorithm,such as K-means.Cluster centers are defined as typical points with a weight which represents the cluster size.Then,the weighted typical points are clustered again by FDP,and then are refined as core,boundary,and redefined halo points.In this way,KFDP has comparable accuracy as FDP but its computational complexity is reduced from O(n^(2))to O(n).We apply and test our KFDP method to the trajectory data of multiple small proteins in terms of torsion angle,secondary structure or contact map.The comparing results with K-means and density-based spatial clustering of applications with noise show the validation of the proposed KFDP.
基金supported by the National Natural Science Foundation of China under Grant No. 61201143the Scientific Research Foundation for Introduced Talent of Nanjing University of Aeronautics and Astronautics under Grant No. 56YAH13029
文摘Cognitive Radio (CR) can use the fre- quency band allocated to a Primary User (PU) on the premise that it will prevent significant of avoiding causing great interference to the PU. In this paper, we consider a wideband CR system where the Secondary User (SU) mini- raises its interference to the PU by jointly al- locating the optimal sensing threshold and sub- carrier power. A multi-parameter optimization problem is formulated to obtain the joint opt- imal allocation by alternating direction opti- mization, which minimises the total interfer- ence to the PU over all of the subcarriers sub- ject to the constraints on the throughput, Bit Error Rate (BER) and maximal total power of the SU, the subcarrier rate and interference power of the PU, and the false alarm and mis- detection probabilities of each subcarrier. The simulation results show that the proposed joint allocation algorithm can achieve the desired mitigation on the interference to the PU at the different subcarrier gains.
文摘The adsorption of phenol, p-nitrophenol and 2,4-dinitrophenol in aqueous phase on activated carbon is performed by evaluating factors such as the pH of the solution, it is found that the value in adsorbate molecule is upper and lower of its respective pKa. Likewise, the heterogeneity of the adsorbent solid is evaluated using commercial activated carbon, which is modified by means of oxidation with HNO3 and reduction with H2 fluxing at high temperature, treatments represent variatians in textural properties of solid which changed equally the superficial chemistry of the same. The major concentration of retained plLenol compound in some samples of carbon is produced in pH values which the solute is basically molecular.
文摘This paper presents an efficient numerical scheme for calculating the periodic motion of a harmonically forced piecewise linear oscillator very accurately. The scheme is based on the shooting technique with the traditional numerical Poincare mapping and its Jacobian replaced by the piecewise analytic ones. Thus, the scheme gets rid of the requirement of the current schemes for an assumed order of the oscillator trajectory passing through different linear regions. The numerical examples in the paper demonstrate that the new scheme, compared with the current schemes, enables one to cope with more complicated dynamics of harmonically forced piecewise linear oscillators.
基金ACKNOWLEDGMENTS We thank Professor Wan-zhen Liang for helpful discussion. This work was completed in her group. This work was supported by the National Natural Science Foundation of China (No.20773112 and No.10674121), the National Key Basic Research Program (No.2006CB922000), the Science and Technological Fund of Anhui Province for Outstanding Youth (No.08040106833), the USTC-HP HPC project, and the SCCAS and Shanghai Supercomputer Center.
文摘The electronic transport properties of oligoacenes sandwiched between two Au(111) surfaces with serial and parrallel configurations were investigeted by using a fully self-consistent nonequilibrium Green's function method combined with density functional calculations. This theoretical results show that the conductivity of oligoacenes with both sandwiched configurations at low bias voltage is mainly determined by the tail of the transmission peak from the perturbed highest occupied molecular orbital. When the molecular length increases, the zero-bias voltage conductance G(0) of oligoacenes with serial configuration neither follows Magoga's exponential law nor displays the even-odd oscillation effect, while the G(O) of the oligoacenes sandwiched with parallel configuration monotonically increases. The reduction of energy gaps, the alignment of the Fermi level, and the spatial distribution of the perturbed molecular orbitals are used to self-consistently explore the transport mechanism through oligoacenes.
基金The project supported by the State Key Project of Fundamental Research of China under Grant No. G2000067101
文摘In this paper, the solution of Chebyshev equation with its argument being greater than 1 is obtained. The initial value of the derivative of the solution is the expression of magnetization, which is valid for any spin quantum number S. The Chebyshev equation is transformed from an ordinary differential equation obtained when we dealt with Heisenberg model, in order to calculate all three components of magnetization, by many-body Green's function under random phase approximation. The Chebyshev functions with argument being greater than 1 are discussed. This paper shows that the Chebyshev polynomials with their argument being greater than 1 have their physical application.
基金Project supported by Grants-in-Aid for Scientific Research fromJapan Society for the Promotion of Science (No. 17560313), and theNational Basic Research Program (973) of China (No. 2004CB719801)
文摘The authors numerically investigated the characteristics of surface plasmons excited on a thin metal grating placed in planer or conical mounting. After formulating the problem, the solution method, Yasuura's method (a modal expansion approach with least-squares boundary matching) was described. Although the grating is periodic in one direction, coupling between TE and TM waves Occurs because arbitrary incidence is assumed. This requires the employment of both TE and TM vector modal functions in the analysis. Numerical computations showed: (l) the excitation of surface plasmons with total or partial absorption of incident light; (2) the resonance character of the coefficient of an evanescent order that couples the plasmon surface wave; (3) the field profile and Poynting's vector. The plasmons excited on the surfaces of a thin metal grating are classified into three types: SISP, SRSP, and LRSP, different from each other in the feature of field profile and energy flow. In addition, the eigenvalue of a plasmon mode was obtained by solving a sequence of diffraction problems with complex-valued angles of incidence and using the quasi-Newton algorithm to predict the real angle of incidence at which the absorption occurs.
文摘The interaction between a solute atom and an extended dislocation was investigated using a continuum approximation method with force multipoles.The dislocation core structure of extended dislocation was modeled with the Peierls-Nabarro model discretized with a number of infinitesimal Volterra dislocations.The interaction energy and force between a nickel solute atom and perfect and extended dislocation in copper were successfully calculated using the force multipoles.The results clearly show that the core structure of extended dislocation weakens the interaction with solute atoms.The interaction energy and force for extended dislocations are almost the half of those for perfect dislocations.
基金the Youth Fund of Zhoukou Normal University(ZKnuqn200606)
文摘The soliton hierarchy associated with a Schrodinger type spectral problem with four potentials is decomposed into a class of new finite-dimensional Hamiltonian systems by using the nonlinearized approach. It is worth to point that the solutions for the soliton hierarchy are reduced to solving the compatible Hamiltonian systems of ordinary differential equations.
基金supported by Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents(No.2017RCJJ034)the National Natural Science Foundation of China(No.41676039)the National Science and Technology Major Project(2017ZX05049002-005)。
文摘Most traditional ground roll separation methods utilize only the difference in geometric characteristics between the ground roll and the refl ection wave to separate them.When the geometric characteristics of data are complex,these methods often lead to damage of the reflection wave or incompletely suppress the ground roll.To solve this problem,we proposed a novel ground roll separation method via threshold filtering and constraint of seismic wavelet support in the curvelet domain;this method is called the TFWS method.First,curvelet threshold fi ltering(CTF)is performed by using the diff erence of the curvelet coeffi cient of the refl ection wave and the ground roll in the location,scale,and slope of their events to eliminate most of the ground roll.Second,the degree of the local damaged signal or the local residual noise is estimated as the local weighting coeffi cient.Under the constraints of seismic wavelet and local weighting coeffi cient,the L1 norm of the refl ection coeffi cient is minimized in the curvelet domain to recover the damaged refl ection wave and attenuate the residual noise.The local weighting coeffi cient in this paper is obtained by calculating the local correlation coeffi cient between the high-pass fi ltering result and the CFT result.We applied the TFWS method to simulate and fi eld data and compared its performance with that of frequency and wavenumber filtering and the CFT method.Results show that the TFWS method can attenuate not only linear ground roll,aliased ground roll,and nonlinear noise but also strong noise with a slope close to the refl ection events.
基金Supported by the Natural Science Foundation of China under Grant No. 10875081Key Project of Beijing Education Commission under Grant No. KZ200810028013
文摘We study the fully entangled fraction (FEF) of arbitrary mixed states. New upper bounds of FEF are derived. These upper bounds make complements on the estimation of the value of FEF. For weakly mixed quantum states, an upper bound is shown to be very tight to the exact value of FEF.
基金The project supported by The President Foundation of the Chinese Academy of Sciences
文摘By virtue of the properties of bipartite entangled state representation we derive the common eigenvector of the parametric Hamiltonian and the two-mode number-difference operator. This eigenvector is superposition of some definite two-mode Foek states with the coefficients being proportional to hypergeometric functions. The Gauss contiguous relation of hypergeometrie functions is used to confirm the formal solution.