Solid phase extraction (SPE) is a widely used sample pretreatment method for separation, purification and enrichment, which has been established due to its significant advantages of time-saving, low consumption of s...Solid phase extraction (SPE) is a widely used sample pretreatment method for separation, purification and enrichment, which has been established due to its significant advantages of time-saving, low consumption of solvent, high enrichment factor, high accuracy, etc. In recent years, a variety of new SPE methods such as molecularly imprinted solid phase extraction (MISPE), magnetic solid phase extraction (MSPE), solid phase micro-extraction (SPME), etc., which are superior to the conventional SPE, have been developed and been widely applied to food, drugs, and environmental monitoring. In this paper, the basic principles and methods of SPE and its new applications in different areas are reviewed.展开更多
A pre-treatment methodology for clenbuterol hydrochloride (CLEN) isolation and enrichment in a complex matrix environment was developed through exploiting molecularly imprinted polymers (MIPs). CLEN-imprinted pol-...A pre-treatment methodology for clenbuterol hydrochloride (CLEN) isolation and enrichment in a complex matrix environment was developed through exploiting molecularly imprinted polymers (MIPs). CLEN-imprinted pol- ymers were synthesized by the combined use of ally-β-cyclodextrin (ally-13-CD) and methacrylic acid (MAA), allyl-β-CD and acrylonitrile (AN), and allyl-β-CD and methyl methacrylate (MMA) as the binary functional monomers. MAA-linked allyl-β-CD MIPs (M-MAA) were characterized by Fourier transform-infrared (FT-IR) spectroscopy and a scanning electron microscope (SEM). Based upon the results, M-MAA polymers generally proved to be an excellent selective extraction compared to its references: AN-linked allyl-β-CD MIPs (M-AN) and MMA-linked allyl-β-CD MIPs (M-MMA). M-MAA polymers were eventually chosen to run through a molecularly imprinted solid-phase extraction (MISPE) micro-column to enrich CLEN residues spiked in pig livers. A high recovery was achieved, ranging from 91.03% to 96.76% with relative standard deviation (RSD) ≤4.45%.展开更多
基金supported by the Key Laboratory for Rare Disease of Shandong Province
文摘Solid phase extraction (SPE) is a widely used sample pretreatment method for separation, purification and enrichment, which has been established due to its significant advantages of time-saving, low consumption of solvent, high enrichment factor, high accuracy, etc. In recent years, a variety of new SPE methods such as molecularly imprinted solid phase extraction (MISPE), magnetic solid phase extraction (MSPE), solid phase micro-extraction (SPME), etc., which are superior to the conventional SPE, have been developed and been widely applied to food, drugs, and environmental monitoring. In this paper, the basic principles and methods of SPE and its new applications in different areas are reviewed.
基金Project supported by the Department of Science and Technology of Zhejiang Province(No.2013C02022-2/01),China
文摘A pre-treatment methodology for clenbuterol hydrochloride (CLEN) isolation and enrichment in a complex matrix environment was developed through exploiting molecularly imprinted polymers (MIPs). CLEN-imprinted pol- ymers were synthesized by the combined use of ally-β-cyclodextrin (ally-13-CD) and methacrylic acid (MAA), allyl-β-CD and acrylonitrile (AN), and allyl-β-CD and methyl methacrylate (MMA) as the binary functional monomers. MAA-linked allyl-β-CD MIPs (M-MAA) were characterized by Fourier transform-infrared (FT-IR) spectroscopy and a scanning electron microscope (SEM). Based upon the results, M-MAA polymers generally proved to be an excellent selective extraction compared to its references: AN-linked allyl-β-CD MIPs (M-AN) and MMA-linked allyl-β-CD MIPs (M-MMA). M-MAA polymers were eventually chosen to run through a molecularly imprinted solid-phase extraction (MISPE) micro-column to enrich CLEN residues spiked in pig livers. A high recovery was achieved, ranging from 91.03% to 96.76% with relative standard deviation (RSD) ≤4.45%.