The photodissociation of Br2 was investigated within the near-visible UV absorption band. Based on the potential curves for the ground and low-lying excited states, the optical cross-sections for the discrete transiti...The photodissociation of Br2 was investigated within the near-visible UV absorption band. Based on the potential curves for the ground and low-lying excited states, the optical cross-sections for the discrete transitions of C1^Пu,B^3Пou^+, A^3П1u←X^1∑g+ and their total energy absorption spectrum are derived, and the quantum yield of (Br+Br6*) channel are determined correspondingly. The one-dimensional Landau-Zener model is used to evaluate the behavior of curve crossing during photodissociation. The results indicate that the influence of nonadiabatic mechanism, which may be caused by the electronic-vibrational interplay between the 13 and C states, is negligibly small for the (Br+Br^*) channel. From the Landau-Zener modeling of the observed product recoil parameter β(Br+Br), the best-fit value of the coupling matrix elenment or coupling strength between the diabatic B and C state potentials is obtained.展开更多
基金ACKNOWLEDGMENT This work was supported by the National Natural Science Foundation of China (No.10534010 and No.20673140).
文摘The photodissociation of Br2 was investigated within the near-visible UV absorption band. Based on the potential curves for the ground and low-lying excited states, the optical cross-sections for the discrete transitions of C1^Пu,B^3Пou^+, A^3П1u←X^1∑g+ and their total energy absorption spectrum are derived, and the quantum yield of (Br+Br6*) channel are determined correspondingly. The one-dimensional Landau-Zener model is used to evaluate the behavior of curve crossing during photodissociation. The results indicate that the influence of nonadiabatic mechanism, which may be caused by the electronic-vibrational interplay between the 13 and C states, is negligibly small for the (Br+Br^*) channel. From the Landau-Zener modeling of the observed product recoil parameter β(Br+Br), the best-fit value of the coupling matrix elenment or coupling strength between the diabatic B and C state potentials is obtained.