The solubilization of small molecules from coal by solvent extraction and the resulting effects on the pore distribution of a low rank coal were studied. Samples were extracted, in succession, with petroleum ether and...The solubilization of small molecules from coal by solvent extraction and the resulting effects on the pore distribution of a low rank coal were studied. Samples were extracted, in succession, with petroleum ether and with CS2. Extract and residue fractions collected during the solubilization process were analyzed by FTIR and by surface area and porosimetry. The results show that an obvious inflection point exists that allows separating the dissolution sequence into stages. Small molecules are first extracted from the free state, then molecules trapped in micropores are extracted and, finally, molecules trapped in the coal-matrix network are extracted. This is indicated from the extraction yield curves. Chain-like carbonyl compounds, -OH (or -NH) containing compounds that are hydrogen bonded and phenolics dominate the petroleum ether extracts. Chain-like carbonyl components and ether compounds (aliphatic ethers and aromatic ethers) dominate the CS2 extracts. A solvent dissolution mechanism and the effect of small molecule extraction on the pore structure are put forward. Diffusion, dissolution, pore opening, pore shrinking or even collapsing caused by swelling, creating of new micropores, pore opening and, finally, colloidallization of some micropores occurs. In the later stages of the extraction the internal structure of the coal is colloidallized due to swelling and the pore number or volume is greatly reduced.展开更多
Anthracite coal was used as raw material to prepare activated carbons as the carbon support in the carbonization-activation process. Modification of the pore size of the activated carbon by chemical vapor deposition o...Anthracite coal was used as raw material to prepare activated carbons as the carbon support in the carbonization-activation process. Modification of the pore size of the activated carbon by chemical vapor deposition of carbon from benzene was examined. These samples were characterized by adsorption of N2 at 77 K and CH4 and N2 at 303 K. The microporosity of these samples was evaluated by the Dubinin-Astakhov Equation. The pore size distribution was obtained by the DFT method applied to the N2 adsorption data at 77 K. The separation selectivity was obtained by the Langmuir Equation. The surface morphology was characterized by an environmental scanning electron microscope. It was observed that all samples of carbon molecular sieves studied were microporous carbonaceous materials. CMS-2 prepared in the present study has a better N2/CH4 separation performance; it can satisfy the requirements of the pressure swing adsorption for concentrating CH4 from the N2/CH4 mixture gas.展开更多
Polyethersulfone(PES)film with regular microporous structure was formed using dichloromethane as the solvent via water vapor induced phase separation(VIPS).The effects of solution concentration,atmospheric humidity an...Polyethersulfone(PES)film with regular microporous structure was formed using dichloromethane as the solvent via water vapor induced phase separation(VIPS).The effects of solution concentration,atmospheric humidity and temperature,as well as molecular weight of PES on the surface morphology of the polymer film were investigated.The surface morphology characterized by SEM showed that the pore size reduced as the solution concentration increased.There was an optimum range of relative humidity for the formation of regular pore structure, which was from 60%to 90%at concentration of 20 g·L-1 and 20°C.With the atmospheric temperature varied from 20 to 30°C,the pore became larger and the space between pores increased.The pore size in the PES film with low molecular weight was smaller than that with high molecular weight.展开更多
The influences of fractal pore structure in coal reservoir on coalbed methane(CBM) migration were analyzed in detail by coupling theoretical models and numerical methods.Different types of fractals were generated base...The influences of fractal pore structure in coal reservoir on coalbed methane(CBM) migration were analyzed in detail by coupling theoretical models and numerical methods.Different types of fractals were generated based on the construction thought of the standard Menger Sponge to model the 3D nonlinear coal pore structures.Then a correlation model between the permeability of fractal porous medium and its pore-size-distribution characteristics was derived using the parallel and serial modes and verified by Lattice Boltzmann Method(LBM).Based on the coupled method,porosity(ф),fractal dimension of pore structure(Db),pore size range(rmin,rmax) and other parameters were systematically analyzed for their influences on the permeability(ф) of fractal porous medium.The results indicate that:① the channels connected by pores with the maximum size(rmax) dominate the permeability,approximating in the quadratic law;② the greater the ratio of r max and r min is,the higher is;③ the relationship between D b and follows a negative power law model,and breaks into two segments at the position where Db ≌2.5.Based on the results above,a predicting model of fractal porous medium permeability was proposed,formulated as k=cfrnmax,where C and n(approximately equal to 2) are constants and f is an expression only containing parameters of fractal pore structure.In addition,the equivalence of the new proposed model for porous medium and the Kozeny-Carman model k=Crn was verified at Db =2.0.展开更多
基金Projects 50474066 and 50874108 supported by the National Natural Science Foundation of China107055 by the Scientific Research Key Project of Ministry of Education+1 种基金BK20070380 by the Natural Science Foundation of Jiangsu ProvinceCPEUKF06-03 and CPEUKF08-06 by the Open Fund of Key Laboratory of Coal Process and Clean Utilization of Ministry of Education,China
文摘The solubilization of small molecules from coal by solvent extraction and the resulting effects on the pore distribution of a low rank coal were studied. Samples were extracted, in succession, with petroleum ether and with CS2. Extract and residue fractions collected during the solubilization process were analyzed by FTIR and by surface area and porosimetry. The results show that an obvious inflection point exists that allows separating the dissolution sequence into stages. Small molecules are first extracted from the free state, then molecules trapped in micropores are extracted and, finally, molecules trapped in the coal-matrix network are extracted. This is indicated from the extraction yield curves. Chain-like carbonyl compounds, -OH (or -NH) containing compounds that are hydrogen bonded and phenolics dominate the petroleum ether extracts. Chain-like carbonyl components and ether compounds (aliphatic ethers and aromatic ethers) dominate the CS2 extracts. A solvent dissolution mechanism and the effect of small molecule extraction on the pore structure are put forward. Diffusion, dissolution, pore opening, pore shrinking or even collapsing caused by swelling, creating of new micropores, pore opening and, finally, colloidallization of some micropores occurs. In the later stages of the extraction the internal structure of the coal is colloidallized due to swelling and the pore number or volume is greatly reduced.
文摘Anthracite coal was used as raw material to prepare activated carbons as the carbon support in the carbonization-activation process. Modification of the pore size of the activated carbon by chemical vapor deposition of carbon from benzene was examined. These samples were characterized by adsorption of N2 at 77 K and CH4 and N2 at 303 K. The microporosity of these samples was evaluated by the Dubinin-Astakhov Equation. The pore size distribution was obtained by the DFT method applied to the N2 adsorption data at 77 K. The separation selectivity was obtained by the Langmuir Equation. The surface morphology was characterized by an environmental scanning electron microscope. It was observed that all samples of carbon molecular sieves studied were microporous carbonaceous materials. CMS-2 prepared in the present study has a better N2/CH4 separation performance; it can satisfy the requirements of the pressure swing adsorption for concentrating CH4 from the N2/CH4 mixture gas.
基金Supported by the National Natural Science Foundation of China (20676015, 20806009), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (20070007055).
文摘Polyethersulfone(PES)film with regular microporous structure was formed using dichloromethane as the solvent via water vapor induced phase separation(VIPS).The effects of solution concentration,atmospheric humidity and temperature,as well as molecular weight of PES on the surface morphology of the polymer film were investigated.The surface morphology characterized by SEM showed that the pore size reduced as the solution concentration increased.There was an optimum range of relative humidity for the formation of regular pore structure, which was from 60%to 90%at concentration of 20 g·L-1 and 20°C.With the atmospheric temperature varied from 20 to 30°C,the pore became larger and the space between pores increased.The pore size in the PES film with low molecular weight was smaller than that with high molecular weight.
基金supported by National Natural Science Foundation of China(Grant Nos.41102093&41072153)CBM Union Foundation of Shanxi Province (Grant No.2012012002)Doctoral Scientific Foundation of Henan Polytechnic University(Grant No.648706)
文摘The influences of fractal pore structure in coal reservoir on coalbed methane(CBM) migration were analyzed in detail by coupling theoretical models and numerical methods.Different types of fractals were generated based on the construction thought of the standard Menger Sponge to model the 3D nonlinear coal pore structures.Then a correlation model between the permeability of fractal porous medium and its pore-size-distribution characteristics was derived using the parallel and serial modes and verified by Lattice Boltzmann Method(LBM).Based on the coupled method,porosity(ф),fractal dimension of pore structure(Db),pore size range(rmin,rmax) and other parameters were systematically analyzed for their influences on the permeability(ф) of fractal porous medium.The results indicate that:① the channels connected by pores with the maximum size(rmax) dominate the permeability,approximating in the quadratic law;② the greater the ratio of r max and r min is,the higher is;③ the relationship between D b and follows a negative power law model,and breaks into two segments at the position where Db ≌2.5.Based on the results above,a predicting model of fractal porous medium permeability was proposed,formulated as k=cfrnmax,where C and n(approximately equal to 2) are constants and f is an expression only containing parameters of fractal pore structure.In addition,the equivalence of the new proposed model for porous medium and the Kozeny-Carman model k=Crn was verified at Db =2.0.