Four-, six-, and eight-membered ring silica nanotubes at temperatures from 300 K to 1600 K are relaxed by classical molecular dynamics simulations with three potential models. The simulation results indicate that the ...Four-, six-, and eight-membered ring silica nanotubes at temperatures from 300 K to 1600 K are relaxed by classical molecular dynamics simulations with three potential models. The simulation results indicate that the stability of the end rings of the three silica nanotubes gradually decreases with increase in temperature. The validity of the vibrational features of silica nanotubes is shown by the vibrational density of states. Infrared spectra on the silica nanotubes under different temperatures are investigated. A detailed assignment of each spectral peak to the corresponding vibrational mode of the three nanotubes has been addressed. The results are in good agreement with the other theoretical and experimental展开更多
Structural and electronic properties of PbnAgn(n=2–12)clusters were investigated by density functional theory with generalized gradient approximation at BLYP level in DMol3 program package.The optimized bimetallic Pb...Structural and electronic properties of PbnAgn(n=2–12)clusters were investigated by density functional theory with generalized gradient approximation at BLYP level in DMol3 program package.The optimized bimetallic PbnAgn(n=2–12)clusters were viewed as the initial structures,then,those were calculated by ab initio molecular dynamics(AIMD)to search possible global minimum energy structures of PbnAgn clusters,finally,the ground state structures of PbnAgn(n=2–12)clusters were achieved.According to the structural evolution of lowest energy structures,Ag atoms prefer gather in the central sites while Pb atoms prefer external positions in PbnAgn(n=2–12)clusters,which is in excellent agreement with experimental results from literature and the application in metallurgy.The average binding energies,HOMO-LUMO gaps,vertical ionization potentials,vertical electron affinities,chemical hardnessη,HOMO orbits,LUMO orbits and density of states of PbnAgn(n=2–12)clusters were calculated.The results indicate that the values of HOMO-LUMO gaps,vertical ionization potentials,vertical electron affinities and chemical hardnessηshow obvious odd-even oscillations when n≤5,PbnAgn(n=2–12)clusters become less chemically stable and show insulator-to-metal transition with the variation of cluster size n,PbnAgn(n≥9)cluster are good candidates to study the properties of PbAg alloys.Those can be well explained by the density of states(DOS)distributions of Pb atoms and Ag atoms between–0.5 Ha and 0.25 Ha in PbnAgn(n=2–12)clusters.展开更多
The bilayer organic light emitting devices (OLEDs) using two common aromatic diamines as hole transporting materials (HTMs) and BBOT (2,5-bis(5-tert-butyl-2-benzoxazolyl)thiophene) as electron transporting mat...The bilayer organic light emitting devices (OLEDs) using two common aromatic diamines as hole transporting materials (HTMs) and BBOT (2,5-bis(5-tert-butyl-2-benzoxazolyl)thiophene) as electron transporting material have been prepared, in which the electroluminescent spectra are different from the fluorescent spectra of each of the constituent materials. The electroluminescence is mainly attributed to exciplex confirmed by photoluminescence and electroluminescence measurements, and the type of exicplex is deternfined in terms of the energy level diagram of the bilayer devices, By comparing the molecular structures and energy levels of TPD and NPB, it is demonstrated that the structure of a molecule as well as its energy level has an effect on the exciplex formation.展开更多
Numerous candidates for exotic hadrons have been detected experimentally in the past two decades,predominantly near the threshold of a pair of hadrons.This study aims to investigate the overall behavior of nearthresho...Numerous candidates for exotic hadrons have been detected experimentally in the past two decades,predominantly near the threshold of a pair of hadrons.This study aims to investigate the overall behavior of nearthreshold line shapes in invariant mass distributions.It is noteworthy that the threshold cusp might manifest as a peak only in channels with attractive interaction.The assertion is made that there should be near-threshold structures for any heavy-quark and heavy-antiquark hadron pairs exhibiting attractive interaction at the threshold,as observed in the invariant mass distribution of heavy quarkonium and light hadrons that couple to the open-flavor hadron pair.Furthermore,we have conducted an analysis of potential hadronic molecules comprising pairs of heavy hadrons,utilizing the Bethe-Salpeter equation with constant interactions derived from the one-boson-exchange model.Observed candidates for these hadronic molecules are in good agreement with our predicted spectrum.展开更多
Thermally stable, solid-state luminescent organic materials are highly desired for the development of practical applications.Herein we synthesized new gold(I) complexes with N-heterocyclic carbene ligands, which have ...Thermally stable, solid-state luminescent organic materials are highly desired for the development of practical applications.Herein we synthesized new gold(I) complexes with N-heterocyclic carbene ligands, which have the ability to form strong metalorganic bond. Consequently, their thermochemical stability is enhanced at temperatures around 300 °C. Precise design of the molecular structure of the ligands, with a focus on ensuring low steric hindrance around Au atoms in order to limit disturbances to Au/Au interactions, provided a complex with a densely packed crystal with a shorter intermolecular Au–Au distance(3.17 ?)than the typical distance. In the solid state, this complex exhibited strong aurophilic interactions, which generated intense phosphorescence even in air at room temperature(quantum yield=16%) in spite of absence of any phosphorescence in solution.This behavior is characteristic for solid-state luminescence referred to as aggregation-controlled emission. Furthermore, the gold(I) complex displays capacity for mechano-and vapo-chromism—that is, the ability to change color reversibly in response to the application of external stimuli. We believe that the proposed design framework, which involves controlling thermal stability and luminescence property separately, provides a new opportunity for the development of practical applications using solid-state luminescent organic molecules.展开更多
文摘Four-, six-, and eight-membered ring silica nanotubes at temperatures from 300 K to 1600 K are relaxed by classical molecular dynamics simulations with three potential models. The simulation results indicate that the stability of the end rings of the three silica nanotubes gradually decreases with increase in temperature. The validity of the vibrational features of silica nanotubes is shown by the vibrational density of states. Infrared spectra on the silica nanotubes under different temperatures are investigated. A detailed assignment of each spectral peak to the corresponding vibrational mode of the three nanotubes has been addressed. The results are in good agreement with the other theoretical and experimental
基金Project(51664032)supported by the Regional Foundation of the National Natural Science Foundation of ChinaProject(51474116)supported by the General Program of the National Natural Science Foundation of China+5 种基金Project(U1502271)supported by the Joint Foundation of the NSFC-Yunnan Province,ChinaProject(2014HA003)supported by the Cultivating Plan Program for the Leader in Science and Technology of Yunnan Province,ChinaProject(2014RA4018)supported by the Program for Nonferrous Metals Vacuum Metallurgy Innovation Team of Ministry of Science and Technology,ChinaProject(2016YFC0400404)supported by the National Key Research and Development Program of ChinaProject(51504115)supported by the Youth Program of National Natural Science Foundation of ChinaProject(IRT_17R48)supported by the Program for Innovative Research Team in University of Ministry of Education of China
文摘Structural and electronic properties of PbnAgn(n=2–12)clusters were investigated by density functional theory with generalized gradient approximation at BLYP level in DMol3 program package.The optimized bimetallic PbnAgn(n=2–12)clusters were viewed as the initial structures,then,those were calculated by ab initio molecular dynamics(AIMD)to search possible global minimum energy structures of PbnAgn clusters,finally,the ground state structures of PbnAgn(n=2–12)clusters were achieved.According to the structural evolution of lowest energy structures,Ag atoms prefer gather in the central sites while Pb atoms prefer external positions in PbnAgn(n=2–12)clusters,which is in excellent agreement with experimental results from literature and the application in metallurgy.The average binding energies,HOMO-LUMO gaps,vertical ionization potentials,vertical electron affinities,chemical hardnessη,HOMO orbits,LUMO orbits and density of states of PbnAgn(n=2–12)clusters were calculated.The results indicate that the values of HOMO-LUMO gaps,vertical ionization potentials,vertical electron affinities and chemical hardnessηshow obvious odd-even oscillations when n≤5,PbnAgn(n=2–12)clusters become less chemically stable and show insulator-to-metal transition with the variation of cluster size n,PbnAgn(n≥9)cluster are good candidates to study the properties of PbAg alloys.Those can be well explained by the density of states(DOS)distributions of Pb atoms and Ag atoms between–0.5 Ha and 0.25 Ha in PbnAgn(n=2–12)clusters.
文摘The bilayer organic light emitting devices (OLEDs) using two common aromatic diamines as hole transporting materials (HTMs) and BBOT (2,5-bis(5-tert-butyl-2-benzoxazolyl)thiophene) as electron transporting material have been prepared, in which the electroluminescent spectra are different from the fluorescent spectra of each of the constituent materials. The electroluminescence is mainly attributed to exciplex confirmed by photoluminescence and electroluminescence measurements, and the type of exicplex is deternfined in terms of the energy level diagram of the bilayer devices, By comparing the molecular structures and energy levels of TPD and NPB, it is demonstrated that the structure of a molecule as well as its energy level has an effect on the exciplex formation.
文摘Numerous candidates for exotic hadrons have been detected experimentally in the past two decades,predominantly near the threshold of a pair of hadrons.This study aims to investigate the overall behavior of nearthreshold line shapes in invariant mass distributions.It is noteworthy that the threshold cusp might manifest as a peak only in channels with attractive interaction.The assertion is made that there should be near-threshold structures for any heavy-quark and heavy-antiquark hadron pairs exhibiting attractive interaction at the threshold,as observed in the invariant mass distribution of heavy quarkonium and light hadrons that couple to the open-flavor hadron pair.Furthermore,we have conducted an analysis of potential hadronic molecules comprising pairs of heavy hadrons,utilizing the Bethe-Salpeter equation with constant interactions derived from the one-boson-exchange model.Observed candidates for these hadronic molecules are in good agreement with our predicted spectrum.
基金supported by the JSPS KAKENSHI (18K05265)JST Matching Planner Program (VP29117941122)+1 种基金JICA Collaboration Kick-starter Program (RU and IITH)the Cooperative Research Program of the Network Joint Research Center for Materials and Devices (Tokyo Institute of Technology)
文摘Thermally stable, solid-state luminescent organic materials are highly desired for the development of practical applications.Herein we synthesized new gold(I) complexes with N-heterocyclic carbene ligands, which have the ability to form strong metalorganic bond. Consequently, their thermochemical stability is enhanced at temperatures around 300 °C. Precise design of the molecular structure of the ligands, with a focus on ensuring low steric hindrance around Au atoms in order to limit disturbances to Au/Au interactions, provided a complex with a densely packed crystal with a shorter intermolecular Au–Au distance(3.17 ?)than the typical distance. In the solid state, this complex exhibited strong aurophilic interactions, which generated intense phosphorescence even in air at room temperature(quantum yield=16%) in spite of absence of any phosphorescence in solution.This behavior is characteristic for solid-state luminescence referred to as aggregation-controlled emission. Furthermore, the gold(I) complex displays capacity for mechano-and vapo-chromism—that is, the ability to change color reversibly in response to the application of external stimuli. We believe that the proposed design framework, which involves controlling thermal stability and luminescence property separately, provides a new opportunity for the development of practical applications using solid-state luminescent organic molecules.