Polymer matrix types of fiber hybrid composites are key factors to improve ballistic impact damage tolerances.Here we report ballistic penetration damages of Kevlar/ultra-high molecular weight polyethylene(UHMWPE)hybr...Polymer matrix types of fiber hybrid composites are key factors to improve ballistic impact damage tolerances.Here we report ballistic penetration damages of Kevlar/ultra-high molecular weight polyethylene(UHMWPE)hybrid composites with thermoplastic polyurethane(PU)matrix.The hybrid composites were penetrated by fragment-simulating projectiles(FSPs)using an air gun impact system.The effects of stacking sequences on the ballistic performance of hybrid composites were analyzed.Two types of specific energy absorption(the energy absorption per unit area density and the energy absorption per unit thickness)were investigated.It was found that the main damage modes of PU hybrid composites were fiber breakage,matrix damage,fiber pullout and interlayer delamination.The instantaneous deformation could not be used as a reference index for evaluating the ballistic performance of the target plate.The energy absorption process of the PU hybrid composites showed a nonlinear pattern.The hybrid structure affected the specific energy absorption of the materials.展开更多
利福霉素类和异烟肼是用于临床的一线抗结核药物,沃尼妙林为新一代半合成截短侧耳素类抗生素。本文通过杂合方法,成功合成了新杂合分子利福霉素异烟肼和利福霉素沃尼妙林。通过IR,1 H NMR,13 C NMR对它们的结构进行了表征;生物活性测定...利福霉素类和异烟肼是用于临床的一线抗结核药物,沃尼妙林为新一代半合成截短侧耳素类抗生素。本文通过杂合方法,成功合成了新杂合分子利福霉素异烟肼和利福霉素沃尼妙林。通过IR,1 H NMR,13 C NMR对它们的结构进行了表征;生物活性测定初步结果表明其具有较好的抗菌活性。展开更多
According to the fitness of heterozygote was lower than homozygote among panmictic population,the process of generational accumulate of mutant gene r was considered.Branch point of r's frequency by generational evolu...According to the fitness of heterozygote was lower than homozygote among panmictic population,the process of generational accumulate of mutant gene r was considered.Branch point of r's frequency by generational evolution which revealed the hereditary incompatibility between R and r,was worked out,and it was found that genetic drift can make r have higher frequency to surpass the branch point to form reproductive isolation.It was not enough to have the three conditions of mutation,genetic drift and natural selection to be the drive of biological evolution;hybrid weakness,the repelling interaction between the genetic background of original population and the new mutation,were also needed.展开更多
Molecular doping has been proven to be an effective approach to adjusting the electronic structure of polymeric carbon nitride(PCN)and thus improving its optical properties and photocatalytic activity.Herein,theobromi...Molecular doping has been proven to be an effective approach to adjusting the electronic structure of polymeric carbon nitride(PCN)and thus improving its optical properties and photocatalytic activity.Herein,theobromine,a compound composed of an imidazole ring and a pyrimidine ring,was first copolymerized with urea to prepared doped PCN.Experimental investigations and theoretical calculations indicate that,a narrowing in band gap and a positive shift in valence band positon happened to the theobromine doped PCN,owing to the synergistic effect between the pyrimidine ring and the imidazole ring in the theobromine molecule.Moreover,it is shown that the doping with theobromine at a suitable mass fraction makes the obtained sample exhibit decreased photoluminescent emission,enhanced photocurrent density,and reduced charge-transport resistance.Consequently,an enhancement in the photocatalytic activity for water oxidation is found for the sample,which oxygen evolution rate is 4.43 times higher than that of the undoped PCN.This work sheds light on the choice of the molecular dopants for PCN to improve its photocatalytic performance.展开更多
By using nonequilibrium Green's function method and first-principles calculations, the electronic transport properties of doped C60 molecular devices were investigated. It is revealed that the C60 molecular devices s...By using nonequilibrium Green's function method and first-principles calculations, the electronic transport properties of doped C60 molecular devices were investigated. It is revealed that the C60 molecular devices show the metal behavior due to the interaction between the C60 molecule and the metal electrode. The current-voltage curve displays a linear behavior at low bias, and the currents have the relation of MI〉M3〉M4〉M2 when the bias voltage is lower than 0.6 V. Electronic transport properties are affected greatly by the doped atoms. Negative differential resistance is found in a certain bias range for C60 and C58BN molecular devices, but cannot be observed in C59B and C59N molecular devices. These unconventional effects can be used to design novel nanoelectronic devices.展开更多
Oryza sativa and Oryza latifolia belong to the AA and CCDD genomes of Oryza, respectively. In this study, amphiploids were obtained from the tube seedlings of O. sativa × O. latifolia F1 hybrids by treatment with...Oryza sativa and Oryza latifolia belong to the AA and CCDD genomes of Oryza, respectively. In this study, amphiploids were obtained from the tube seedlings of O. sativa × O. latifolia F1 hybrids by treatment with colchicine, an agent for chromosome doubling. Subse- quently, amphiploids were investigated using the methods of morphology, genomic in situ hybridization, and molec- ular markers. Amphiploids were characterized by a shorter plant height, larger diameter of stem, longer and wider leaves, darker leaf color, decreased spikelets per panicle and panicle length, and larger spikelets and anthers than the original F1 hybrid. Based on the mitotic metaphase chro- mosome number of the investigated root tips, the somatic chromosome number of the amphiploid is 2n = 72. Additionally, the amphiploid is an allohexaploid, and its genomic constitution is AACCDD by genomic in situ hybridization analysis. Finally, the amphiploids were identified to be true using 37 polymorphic markers at the DNA level.展开更多
Talin is an integrin-binding protein located at focal adhesion site and serves as both an adapter and a force transmitter. Its integrin binding activity is regulated by the intramolecular autoinhibition interaction be...Talin is an integrin-binding protein located at focal adhesion site and serves as both an adapter and a force transmitter. Its integrin binding activity is regulated by the intramolecular autoinhibition interaction between its F3 and RS domains. Here, we used atomic force microscopy to measure the strength of talin autoinhibition complex. Our results suggest that the lifetime of talin autoinhibition complex shows weak catch bond behavior and does not change significantly at smaller forces, while it drops rapidly at larger forces(>10 p N). Moreover, besides the complex conformation revealed by crystal structure, our molecular dynamics(MD) simulations indicate the possible existence of another stable conformation. Further analysis indicates that forces may regulate the equilibrium of the two stable binding states and result in the non-exponential force dependence of the binding lifetime. Our findings reveal a negative regulation mechanism on talin activation and provide a new point of view on the function of talin in focal adhesion.展开更多
基金National Natural Science Foundation of China(No.51875099)。
文摘Polymer matrix types of fiber hybrid composites are key factors to improve ballistic impact damage tolerances.Here we report ballistic penetration damages of Kevlar/ultra-high molecular weight polyethylene(UHMWPE)hybrid composites with thermoplastic polyurethane(PU)matrix.The hybrid composites were penetrated by fragment-simulating projectiles(FSPs)using an air gun impact system.The effects of stacking sequences on the ballistic performance of hybrid composites were analyzed.Two types of specific energy absorption(the energy absorption per unit area density and the energy absorption per unit thickness)were investigated.It was found that the main damage modes of PU hybrid composites were fiber breakage,matrix damage,fiber pullout and interlayer delamination.The instantaneous deformation could not be used as a reference index for evaluating the ballistic performance of the target plate.The energy absorption process of the PU hybrid composites showed a nonlinear pattern.The hybrid structure affected the specific energy absorption of the materials.
基金Supported by Research Projects from Education Department of Guangxi(200807MS065)Mathematical Modeling in Population Genetics from Talents Scheme of Universities in Guangxi~~
文摘According to the fitness of heterozygote was lower than homozygote among panmictic population,the process of generational accumulate of mutant gene r was considered.Branch point of r's frequency by generational evolution which revealed the hereditary incompatibility between R and r,was worked out,and it was found that genetic drift can make r have higher frequency to surpass the branch point to form reproductive isolation.It was not enough to have the three conditions of mutation,genetic drift and natural selection to be the drive of biological evolution;hybrid weakness,the repelling interaction between the genetic background of original population and the new mutation,were also needed.
基金supported by the National Natural Science Foundation of China(21276088,U1507201)Natural Science Foundation of Guangdong Province(2014A030312009)China Postdoctoral Science Foundation(2018M640784)~~
文摘Molecular doping has been proven to be an effective approach to adjusting the electronic structure of polymeric carbon nitride(PCN)and thus improving its optical properties and photocatalytic activity.Herein,theobromine,a compound composed of an imidazole ring and a pyrimidine ring,was first copolymerized with urea to prepared doped PCN.Experimental investigations and theoretical calculations indicate that,a narrowing in band gap and a positive shift in valence band positon happened to the theobromine doped PCN,owing to the synergistic effect between the pyrimidine ring and the imidazole ring in the theobromine molecule.Moreover,it is shown that the doping with theobromine at a suitable mass fraction makes the obtained sample exhibit decreased photoluminescent emission,enhanced photocurrent density,and reduced charge-transport resistance.Consequently,an enhancement in the photocatalytic activity for water oxidation is found for the sample,which oxygen evolution rate is 4.43 times higher than that of the undoped PCN.This work sheds light on the choice of the molecular dopants for PCN to improve its photocatalytic performance.
基金Project(07JJ3102) supported by the Natural Science Foundation of Hunan Province, ChinaProject(1343-74236000006) supported by the Graduate Foundation of Hunan Province, ChinaProject(11MY20) supported by the Mittal Entrepreneurship Program of China
文摘By using nonequilibrium Green's function method and first-principles calculations, the electronic transport properties of doped C60 molecular devices were investigated. It is revealed that the C60 molecular devices show the metal behavior due to the interaction between the C60 molecule and the metal electrode. The current-voltage curve displays a linear behavior at low bias, and the currents have the relation of MI〉M3〉M4〉M2 when the bias voltage is lower than 0.6 V. Electronic transport properties are affected greatly by the doped atoms. Negative differential resistance is found in a certain bias range for C60 and C58BN molecular devices, but cannot be observed in C59B and C59N molecular devices. These unconventional effects can be used to design novel nanoelectronic devices.
基金supported by the National Natural Science Foundation of China (31571624, 31071382)the National Basic Research Program of China (2010CB125904, 2013CBA01405)+1 种基金the key Natural Science Project in University of Jiangsu Province (15KJA210004)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Oryza sativa and Oryza latifolia belong to the AA and CCDD genomes of Oryza, respectively. In this study, amphiploids were obtained from the tube seedlings of O. sativa × O. latifolia F1 hybrids by treatment with colchicine, an agent for chromosome doubling. Subse- quently, amphiploids were investigated using the methods of morphology, genomic in situ hybridization, and molec- ular markers. Amphiploids were characterized by a shorter plant height, larger diameter of stem, longer and wider leaves, darker leaf color, decreased spikelets per panicle and panicle length, and larger spikelets and anthers than the original F1 hybrid. Based on the mitotic metaphase chro- mosome number of the investigated root tips, the somatic chromosome number of the amphiploid is 2n = 72. Additionally, the amphiploid is an allohexaploid, and its genomic constitution is AACCDD by genomic in situ hybridization analysis. Finally, the amphiploids were identified to be true using 37 polymorphic markers at the DNA level.
基金supported by the National Basic Research Program of China(2014CB910202)National Natural Science Foundation of China(11302240,31070827 and 31222022)
文摘Talin is an integrin-binding protein located at focal adhesion site and serves as both an adapter and a force transmitter. Its integrin binding activity is regulated by the intramolecular autoinhibition interaction between its F3 and RS domains. Here, we used atomic force microscopy to measure the strength of talin autoinhibition complex. Our results suggest that the lifetime of talin autoinhibition complex shows weak catch bond behavior and does not change significantly at smaller forces, while it drops rapidly at larger forces(>10 p N). Moreover, besides the complex conformation revealed by crystal structure, our molecular dynamics(MD) simulations indicate the possible existence of another stable conformation. Further analysis indicates that forces may regulate the equilibrium of the two stable binding states and result in the non-exponential force dependence of the binding lifetime. Our findings reveal a negative regulation mechanism on talin activation and provide a new point of view on the function of talin in focal adhesion.