Density functional theory (DFT) B3LYP at 6-31G* level is employed to optimize the structures of the molecules bridged through n-vertex bis-substituted carborane (n=5, 6, 7) and combined with finite field (FF) formalis...Density functional theory (DFT) B3LYP at 6-31G* level is employed to optimize the structures of the molecules bridged through n-vertex bis-substituted carborane (n=5, 6, 7) and combined with finite field (FF) formalism to calculate the second-order NLO properties. The results indicate that the structures of n-vertex bis-substituted carborane (n=5, 6, 7) are changed due to bridged donor and acceptor moieties. The distances between two C atoms are becoming longer. And the stability and dipole moment are in- fluenced by changing substituted positions of C atoms. The isomers with the substituents connecting with C atoms of lower coordination number have better stability and larger values of polarizability. One-dimensional structure of the molecules bridged through n-vertex bis-substituted carborane (n=5, 6, 7) is in favor of intramolecular charge-transfer. Meanwhile, the isomer with a larger change of dipole moment has larger value of second-order NLO properties during the charge-transfer process.展开更多
基金Supported by the Foundation of Jilin Provincial Excellent Youth (Grant No. 20050107)Youth Science Foundation of Northeast Normal University (Grant No. 111494117)
文摘Density functional theory (DFT) B3LYP at 6-31G* level is employed to optimize the structures of the molecules bridged through n-vertex bis-substituted carborane (n=5, 6, 7) and combined with finite field (FF) formalism to calculate the second-order NLO properties. The results indicate that the structures of n-vertex bis-substituted carborane (n=5, 6, 7) are changed due to bridged donor and acceptor moieties. The distances between two C atoms are becoming longer. And the stability and dipole moment are in- fluenced by changing substituted positions of C atoms. The isomers with the substituents connecting with C atoms of lower coordination number have better stability and larger values of polarizability. One-dimensional structure of the molecules bridged through n-vertex bis-substituted carborane (n=5, 6, 7) is in favor of intramolecular charge-transfer. Meanwhile, the isomer with a larger change of dipole moment has larger value of second-order NLO properties during the charge-transfer process.