Two series of ZSM-5 and beta zeolites were pretreated in 1.0 mol/L HNO3 solution at room temper-ature for various time periods. The catalytic performances of their Fe-exchanged products in N2O decomposition were evalu...Two series of ZSM-5 and beta zeolites were pretreated in 1.0 mol/L HNO3 solution at room temper-ature for various time periods. The catalytic performances of their Fe-exchanged products in N2O decomposition were evaluated. The Fe-zeolite catalysts were characterized using N2 adsorp-tion-desorption, inductively coupled plasma optical emission spectroscopy, X-ray diffraction, ultra-violet-visible spectroscopy, temperature-programmed desorption of NH3, and scanning and trans-mission electron microscopies. For the ZSM-5 zeolite, acid leaching primarily takes place on the crystal surface and the particle size is reduced, therefore the pore channels are shortened. However, because of the good stability of MFI zeolites, the acid does not greatly penetrate the pore channels and new mesopores are not created. For the beta zeolite, because the amorphous material is in-clined to dissolve(deagglomerate), some of the micropores are slightly dilated. The improved cata-lytic activities can be explained by the increased active Fe loading as a result of structural changes.展开更多
The CO2 adsorption data may show more than one section in the Dubinin-Radushkevich-Kaganer(DRK) plot if samples had been over-activated. Each section in the plot represents a range of pore size. The whole DRK plot pro...The CO2 adsorption data may show more than one section in the Dubinin-Radushkevich-Kaganer(DRK) plot if samples had been over-activated. Each section in the plot represents a range of pore size. The whole DRK plot provided information on the pore size distribution(PSD) of a sample, which may be used to monitor the effect of activation conditions in activation processes.展开更多
The selective dehydrogenation of ethanol to acetaldehyde is a promising route for acetaldehyde production.Although Cu-based catalysts exhibit high activity in ethanol dehydrogenation,a rapid deactivation due to Cu sin...The selective dehydrogenation of ethanol to acetaldehyde is a promising route for acetaldehyde production.Although Cu-based catalysts exhibit high activity in ethanol dehydrogenation,a rapid deactivation due to Cu sintering always occurs.In this study,highly dispersed Cu species were stabilized using the silanol defects in Beta zeolite(denoted as Beta)resulting from dealumination,and applied as robust catalysts for ethanol-to-acetaldehyde conversion.Typically,a long catalyst lifetime of 100 h with an acetaldehyde yield of^70%could be achieved over 5%Cu/Beta.The presence of Cu^+and Cu0 species and the agglomeration of Cu particles after a long-term reaction for 180 h were revealed by transmission electron microscopy,thermogravimetric analysis,and CO-diffuse-reflectance infrared Fourier transform spectroscopy,and were responsible for the deactivation of the Cu/Beta catalyst in the ethanol-to-acetaldehyde conversion.展开更多
HZSM-5 coating using three colloidal silica binders, acidic colloidal silica (ACS), neutral colloidal silica (NCS) and basic colloidal silica (BCS), was prepared to study the effect of hinders on their adhesion ...HZSM-5 coating using three colloidal silica binders, acidic colloidal silica (ACS), neutral colloidal silica (NCS) and basic colloidal silica (BCS), was prepared to study the effect of hinders on their adhesion and catalytic activity. Scanning electron microscopy characterization indicated that the zeolite coating using BCS shows the smoothest surface with higher homogeneity and adherence strength. The specific surface area, relative crystallization and acid site strength of zeolites are also dependent on the binder used. Catalytic cracking of supercritical n- dodecane over the series of zeolite coating with various binders indicated that HZSM-5 coating with BCS exhibits the highest and the most stable catalytic activity compared with other kinds of binders, and also exhibits a stable catalytic activity ascribed to its proper acid property and microstructure.展开更多
Fe-ZSM-5 catalysts modified by Cu and Ce by aqueous solution ion-exchange and incipient wetness impregnation methods were tested in the selective catalytic reduction of NO_(x) with NH_(3).A variety of characterization...Fe-ZSM-5 catalysts modified by Cu and Ce by aqueous solution ion-exchange and incipient wetness impregnation methods were tested in the selective catalytic reduction of NO_(x) with NH_(3).A variety of characterization techniques(NH_(3)-SCO,BET,XRD,XPS,UV-Vis,NH_(3)-TPD,H_(2)-TPR)were used to explore the changes of the active sites,acid sites and pore structure of the catalyst.It was found that the dispersion of active Cu species and Fe species had great influences on the catalytic activity in the whole catalytic process.The Cu doping into the Fe-ZSM-5 catalyst produced new active species,isolated Cu ions and CuO particles,resulting in the improved low-temperature catalytic activity.However,the NH_(3) oxidation was enhanced,and part of the Fe^(3+)active sites and more Brønsted acidic sites in the catalyst were occupied by Cu species,which causes the decrease of the high-temperature activity.The recovery of hightemperature activity could be attributed to the recovery of active Cu species and Fe species promoted by Ce and the promotion of active species dispersion.The results provide theoretical support for adjusting the active window of Febased SCR catalyst by multi-metal doping.展开更多
The mordenite(MOR) nanoparticles(MNPs)with ultra-small crystallites(~30 nm) were synthesized by using tetraethylammonium bromide(TEAB) as structure directing agent at low temperature(403K). The formation of ...The mordenite(MOR) nanoparticles(MNPs)with ultra-small crystallites(~30 nm) were synthesized by using tetraethylammonium bromide(TEAB) as structure directing agent at low temperature(403K). The formation of MNPs was considered to be due to high concentration of TEAB and occurrence of limiting Ostwald ripening at low temperature. The MNPs exhibited not only higher catalytic activity at low temperature for selective catalytic reduction of NOx but also higher catalytic activity and longer lifetime for disproportionation of toluene than conventional MOR(cMOR) bulk crystals.展开更多
基金supported by the National Natural Science Foundation of China (21307144,21307007)Science of Technology Development Plan of Jilin Province of China (20140520150JH)~~
文摘Two series of ZSM-5 and beta zeolites were pretreated in 1.0 mol/L HNO3 solution at room temper-ature for various time periods. The catalytic performances of their Fe-exchanged products in N2O decomposition were evaluated. The Fe-zeolite catalysts were characterized using N2 adsorp-tion-desorption, inductively coupled plasma optical emission spectroscopy, X-ray diffraction, ultra-violet-visible spectroscopy, temperature-programmed desorption of NH3, and scanning and trans-mission electron microscopies. For the ZSM-5 zeolite, acid leaching primarily takes place on the crystal surface and the particle size is reduced, therefore the pore channels are shortened. However, because of the good stability of MFI zeolites, the acid does not greatly penetrate the pore channels and new mesopores are not created. For the beta zeolite, because the amorphous material is in-clined to dissolve(deagglomerate), some of the micropores are slightly dilated. The improved cata-lytic activities can be explained by the increased active Fe loading as a result of structural changes.
基金Supported by the National Natural Science Foundation of China(No.29936100).
文摘The CO2 adsorption data may show more than one section in the Dubinin-Radushkevich-Kaganer(DRK) plot if samples had been over-activated. Each section in the plot represents a range of pore size. The whole DRK plot provided information on the pore size distribution(PSD) of a sample, which may be used to monitor the effect of activation conditions in activation processes.
基金supported by the National Natural Science Foundation of China(21872072,21573113)Municipal Natural Science Foundation of Tianjin(18JCZDJC37400)Sinopec(417012)~~
文摘The selective dehydrogenation of ethanol to acetaldehyde is a promising route for acetaldehyde production.Although Cu-based catalysts exhibit high activity in ethanol dehydrogenation,a rapid deactivation due to Cu sintering always occurs.In this study,highly dispersed Cu species were stabilized using the silanol defects in Beta zeolite(denoted as Beta)resulting from dealumination,and applied as robust catalysts for ethanol-to-acetaldehyde conversion.Typically,a long catalyst lifetime of 100 h with an acetaldehyde yield of^70%could be achieved over 5%Cu/Beta.The presence of Cu^+and Cu0 species and the agglomeration of Cu particles after a long-term reaction for 180 h were revealed by transmission electron microscopy,thermogravimetric analysis,and CO-diffuse-reflectance infrared Fourier transform spectroscopy,and were responsible for the deactivation of the Cu/Beta catalyst in the ethanol-to-acetaldehyde conversion.
基金Supported by the National Natural Science Foundation of China(91116001)
文摘HZSM-5 coating using three colloidal silica binders, acidic colloidal silica (ACS), neutral colloidal silica (NCS) and basic colloidal silica (BCS), was prepared to study the effect of hinders on their adhesion and catalytic activity. Scanning electron microscopy characterization indicated that the zeolite coating using BCS shows the smoothest surface with higher homogeneity and adherence strength. The specific surface area, relative crystallization and acid site strength of zeolites are also dependent on the binder used. Catalytic cracking of supercritical n- dodecane over the series of zeolite coating with various binders indicated that HZSM-5 coating with BCS exhibits the highest and the most stable catalytic activity compared with other kinds of binders, and also exhibits a stable catalytic activity ascribed to its proper acid property and microstructure.
基金Project(51906089)supported by the National Natural Science Foundation of ChinaProject(NELMS2018A18)supported by the National Engineering Laboratory for Mobile Source Emission Control Technology,China+1 种基金Project(XNYQ2021-002)supported by the Provincial Engineering Research Center for New Energy Vehicle Intelligent Control and Simulation Test Technology of Sichuan,ChinaProject(GY2020016)supported by the Zhenjiang City Key R&D Program,China。
文摘Fe-ZSM-5 catalysts modified by Cu and Ce by aqueous solution ion-exchange and incipient wetness impregnation methods were tested in the selective catalytic reduction of NO_(x) with NH_(3).A variety of characterization techniques(NH_(3)-SCO,BET,XRD,XPS,UV-Vis,NH_(3)-TPD,H_(2)-TPR)were used to explore the changes of the active sites,acid sites and pore structure of the catalyst.It was found that the dispersion of active Cu species and Fe species had great influences on the catalytic activity in the whole catalytic process.The Cu doping into the Fe-ZSM-5 catalyst produced new active species,isolated Cu ions and CuO particles,resulting in the improved low-temperature catalytic activity.However,the NH_(3) oxidation was enhanced,and part of the Fe^(3+)active sites and more Brønsted acidic sites in the catalyst were occupied by Cu species,which causes the decrease of the high-temperature activity.The recovery of hightemperature activity could be attributed to the recovery of active Cu species and Fe species promoted by Ce and the promotion of active species dispersion.The results provide theoretical support for adjusting the active window of Febased SCR catalyst by multi-metal doping.
基金supported by the National Natural Science Foundation of China (21533002 and 21571128)the National Excellent Doctoral Dissertation of China (201454)the National Key R&D Program of China (2016YFC0205900)
文摘The mordenite(MOR) nanoparticles(MNPs)with ultra-small crystallites(~30 nm) were synthesized by using tetraethylammonium bromide(TEAB) as structure directing agent at low temperature(403K). The formation of MNPs was considered to be due to high concentration of TEAB and occurrence of limiting Ostwald ripening at low temperature. The MNPs exhibited not only higher catalytic activity at low temperature for selective catalytic reduction of NOx but also higher catalytic activity and longer lifetime for disproportionation of toluene than conventional MOR(cMOR) bulk crystals.