With more than 1,000 participants from all over the world, the International Conference on Nanoscience and Technology (ChinaNANO) was successfully convened in Beijing from September 7 to 9, 2011. The scientists hel...With more than 1,000 participants from all over the world, the International Conference on Nanoscience and Technology (ChinaNANO) was successfully convened in Beijing from September 7 to 9, 2011. The scientists held hot discussions on the forefront of nanoscience and展开更多
The quest for low‐cost yet efficient non‐Pt electrocatalysts for the oxygen reduction reaction(ORR)has become one of the main focuses of research in the field of catalysis,which has implications for the development ...The quest for low‐cost yet efficient non‐Pt electrocatalysts for the oxygen reduction reaction(ORR)has become one of the main focuses of research in the field of catalysis,which has implications for the development of the next generation of greener fuel cells.Here,we comprehensively describe the'big picture'of recent advances made in the rational design of ORR electrocatalysts,including molecule‐based,metal‐oxide‐based,metal‐nanomaterial‐based and two‐dimensional electrocatalysts.Transition metals can fabricate molecular electrocatalysts with N4‐macrocycles such as porphyrin‐class compounds and the so‐formed M-N-C active centre plays a crucial role in determining the catalytic performances towards the ORR.Group‐IV and‐V Transition metal oxides represent another class of promising alternative of Pt‐based catalysts for the ORR which catalytic activity largely depends on the surface structure and the introduction of surface defects.Recent advances in synthesis of metallic nanoparticles(NPs)allow for precise control over particle sizes and shapes and the crystalline facets exposed to enhance the ORR performance of electrocatalysts.Two‐dimensional materials such as functionalized grapheme or MoS2are emerging as novel electrocatalysts for the ORR.This review covers various aspects towards the design of future ORR electrocatalysts,including the catalytic performance,stability,durability and cost.Some novel electrocatalysts even surpass commercial Pt/C systems,demonstrating their potential to be alternatives in industrial applications.Despite the encouraging progress,challenges,which are also described,remain to be overcome before the real‐world application of novel ORR electrocatalysts.展开更多
A novel molecularly imprinted polymer (MIP) based on upconversion nanoparticles (UCNPs) was successfully synthesized for determination of Ochratoxin A (OTA). The MIP was developed on the silica-coated UCNPs using N-(1...A novel molecularly imprinted polymer (MIP) based on upconversion nanoparticles (UCNPs) was successfully synthesized for determination of Ochratoxin A (OTA). The MIP was developed on the silica-coated UCNPs using N-(1-hydroxy-2-naphthoyl amido)-(L)-phenylalanine (HNA-Phe) as the alternative template. The final composite combined the advantages of the high selectivity of MIP with the high fluorescence intensity of UCNPs which was selective and sensitive to OTA. Under the optimal condition, the fluorescence intensity of UCNPs@SiO2@MIP decreases linearly when the concentration of OTA increases from 0.05 to 1.0 mg/L. The detection limit of OTA with the method was 0.031 mg/L. At three spiked concentration levels (50, 100 and 200 μg/kg), the recovery ranges of OTA in corn, rice and feed are 88.0%–91.6%, 80.2%–91.6% and 89.2%–90.4%, respectively.展开更多
To research the relationship between the elastic parameters and the molecular structures of nano hybrid polyhedral oligomeric silsesquioxanes (POSS) materials, the mechanical properties at different temperatures for...To research the relationship between the elastic parameters and the molecular structures of nano hybrid polyhedral oligomeric silsesquioxanes (POSS) materials, the mechanical properties at different temperatures for three POSS polymers with different molecular architectures, polymerlized norbornene POSS homopolymer (PNPOSS, pedant architecture), γ- (2, 3 glycidoxy) propyl diaminoethane POSS polymer (GPDP, catena architecture) and trimethoxysilylcyelopentyl POSS polymer ( TSCP, cage - cage network architecture) were obtained by molecular dynamics simulations based on the Compass force-field. Results indicate that the moleculax architectures of the POSS polymers have great influence on the reinforced effects. The effect of the cage-cage network architecture is best, while that of the catena architecture takes second place and the pedant architecture has the least influence comparatively. The reinforced effects of the POSS monomers were examined. The influences of the temperatures on these effects were analyzed also. It may provide some basis for the reasonable applications of the excellent mechanical properties of the organic-inorganic nano-hybrid materials. It may also provide references for exploitation and design of the POSS materials.展开更多
文摘With more than 1,000 participants from all over the world, the International Conference on Nanoscience and Technology (ChinaNANO) was successfully convened in Beijing from September 7 to 9, 2011. The scientists held hot discussions on the forefront of nanoscience and
基金supported by the Australian Research Councile Discovery Projects(DP140100052,DP150103750)Advanced Study and Training Program of Jiangsu Vocational Education(2016TDFX013)High Level Talent Fund of Yancheng Vocational Institute of Health Sciences and Scientific Innovation Team Project of Yancheng Vocational Institute of Health Sciences~~
文摘The quest for low‐cost yet efficient non‐Pt electrocatalysts for the oxygen reduction reaction(ORR)has become one of the main focuses of research in the field of catalysis,which has implications for the development of the next generation of greener fuel cells.Here,we comprehensively describe the'big picture'of recent advances made in the rational design of ORR electrocatalysts,including molecule‐based,metal‐oxide‐based,metal‐nanomaterial‐based and two‐dimensional electrocatalysts.Transition metals can fabricate molecular electrocatalysts with N4‐macrocycles such as porphyrin‐class compounds and the so‐formed M-N-C active centre plays a crucial role in determining the catalytic performances towards the ORR.Group‐IV and‐V Transition metal oxides represent another class of promising alternative of Pt‐based catalysts for the ORR which catalytic activity largely depends on the surface structure and the introduction of surface defects.Recent advances in synthesis of metallic nanoparticles(NPs)allow for precise control over particle sizes and shapes and the crystalline facets exposed to enhance the ORR performance of electrocatalysts.Two‐dimensional materials such as functionalized grapheme or MoS2are emerging as novel electrocatalysts for the ORR.This review covers various aspects towards the design of future ORR electrocatalysts,including the catalytic performance,stability,durability and cost.Some novel electrocatalysts even surpass commercial Pt/C systems,demonstrating their potential to be alternatives in industrial applications.Despite the encouraging progress,challenges,which are also described,remain to be overcome before the real‐world application of novel ORR electrocatalysts.
基金Project(17ZYPTJC00050)supported by Science and Technology Committee of Tianjin,ChinaProject(2017YFC1600803)supported by the Ministry of Science and Technology of China
文摘A novel molecularly imprinted polymer (MIP) based on upconversion nanoparticles (UCNPs) was successfully synthesized for determination of Ochratoxin A (OTA). The MIP was developed on the silica-coated UCNPs using N-(1-hydroxy-2-naphthoyl amido)-(L)-phenylalanine (HNA-Phe) as the alternative template. The final composite combined the advantages of the high selectivity of MIP with the high fluorescence intensity of UCNPs which was selective and sensitive to OTA. Under the optimal condition, the fluorescence intensity of UCNPs@SiO2@MIP decreases linearly when the concentration of OTA increases from 0.05 to 1.0 mg/L. The detection limit of OTA with the method was 0.031 mg/L. At three spiked concentration levels (50, 100 and 200 μg/kg), the recovery ranges of OTA in corn, rice and feed are 88.0%–91.6%, 80.2%–91.6% and 89.2%–90.4%, respectively.
文摘To research the relationship between the elastic parameters and the molecular structures of nano hybrid polyhedral oligomeric silsesquioxanes (POSS) materials, the mechanical properties at different temperatures for three POSS polymers with different molecular architectures, polymerlized norbornene POSS homopolymer (PNPOSS, pedant architecture), γ- (2, 3 glycidoxy) propyl diaminoethane POSS polymer (GPDP, catena architecture) and trimethoxysilylcyelopentyl POSS polymer ( TSCP, cage - cage network architecture) were obtained by molecular dynamics simulations based on the Compass force-field. Results indicate that the moleculax architectures of the POSS polymers have great influence on the reinforced effects. The effect of the cage-cage network architecture is best, while that of the catena architecture takes second place and the pedant architecture has the least influence comparatively. The reinforced effects of the POSS monomers were examined. The influences of the temperatures on these effects were analyzed also. It may provide some basis for the reasonable applications of the excellent mechanical properties of the organic-inorganic nano-hybrid materials. It may also provide references for exploitation and design of the POSS materials.