The genome sequence information in combination with DNA microarrays promises to revolutionize the way of cellu-lar and molecular biological research by allowing complex mixtures of RNA and DNA to interrogated in a par...The genome sequence information in combination with DNA microarrays promises to revolutionize the way of cellu-lar and molecular biological research by allowing complex mixtures of RNA and DNA to interrogated in a parallel and quantita-tive fashion. DNA microarrays can be used to measure levels of gene expression for tens of thousands of gene simultane-ously and take advantage of all available sequence information for experimental design and data interpretation in pursuit of biological understanding. Recent progress in experimental genomics allows DNA microarrays not simply to provide a cata-logue of all the genes and information about their function, but to understand how the components work together to comprise functioning cells and organisms. This brief review gives a survey of DNA microarrays technology and its applications in ge-nome and gene function analysis, gene expression studies, biological signal and defense system, cell cycle regulation, mechanism of transcriptional regulation, proteomics, and the functionality of food component.展开更多
AIM:To investigate the role of glucose transporter 1 (GLUT1) expression in colorectal carcinogenesis and evaluate the correlation with clinicopathological parameters and apoptosis-activating factor-1 (Apaf-1) expressi...AIM:To investigate the role of glucose transporter 1 (GLUT1) expression in colorectal carcinogenesis and evaluate the correlation with clinicopathological parameters and apoptosis-activating factor-1 (Apaf-1) expression in colorectal adenocarcinomas. METHODS:We used tissue microarrays consisting of 26 normal mucosa,50 adenomas,515 adenocarcinomas,and 127 metastatic lesions. Medical records were reviewed and clinicopathological analysis was performed. RESULTS:GLUT1 expression was absent in normal mucosa and low or moderately apparent in 19 cases (38.0%) of 50 adenomas. However,GLUT1 expression was detected in 423 (82.1%) of 515 adenocarcinomas and in 96 (75.6%) of 127 metastatic lesions. GLUT1 expression was significantly correlated with female gender (P = 0.009),non-mucinous tumor type (P = 0.045),poorer differentiation (P = 0.001),lymph node metastasis (P < 0.001),higher AJCC and Dukes stage (P < 0.001 and P < 0.001,respectively). There was a significant inverse correlation between GLUT1 expression and Apaf-1 expression (P = 0.001). In univariate survival analysis,patients with GLUT1 expression demonstrated poor overall survival and disease-free survival (P = 0.047 and P = 0.021,respectively,log-rank test). CONCLUSION:GLUT1 expression was frequently increased in adenocarcinomas and metastatic lesions. GLUT1 expression was significantly correlated with poorer clinicopathologic phenotypes and survival of patients with colorectal adenocarcinomas.展开更多
文摘The genome sequence information in combination with DNA microarrays promises to revolutionize the way of cellu-lar and molecular biological research by allowing complex mixtures of RNA and DNA to interrogated in a parallel and quantita-tive fashion. DNA microarrays can be used to measure levels of gene expression for tens of thousands of gene simultane-ously and take advantage of all available sequence information for experimental design and data interpretation in pursuit of biological understanding. Recent progress in experimental genomics allows DNA microarrays not simply to provide a cata-logue of all the genes and information about their function, but to understand how the components work together to comprise functioning cells and organisms. This brief review gives a survey of DNA microarrays technology and its applications in ge-nome and gene function analysis, gene expression studies, biological signal and defense system, cell cycle regulation, mechanism of transcriptional regulation, proteomics, and the functionality of food component.
基金Supported by The Research Fund of Hanyang University (HY-2010-MC) to Paik SS
文摘AIM:To investigate the role of glucose transporter 1 (GLUT1) expression in colorectal carcinogenesis and evaluate the correlation with clinicopathological parameters and apoptosis-activating factor-1 (Apaf-1) expression in colorectal adenocarcinomas. METHODS:We used tissue microarrays consisting of 26 normal mucosa,50 adenomas,515 adenocarcinomas,and 127 metastatic lesions. Medical records were reviewed and clinicopathological analysis was performed. RESULTS:GLUT1 expression was absent in normal mucosa and low or moderately apparent in 19 cases (38.0%) of 50 adenomas. However,GLUT1 expression was detected in 423 (82.1%) of 515 adenocarcinomas and in 96 (75.6%) of 127 metastatic lesions. GLUT1 expression was significantly correlated with female gender (P = 0.009),non-mucinous tumor type (P = 0.045),poorer differentiation (P = 0.001),lymph node metastasis (P < 0.001),higher AJCC and Dukes stage (P < 0.001 and P < 0.001,respectively). There was a significant inverse correlation between GLUT1 expression and Apaf-1 expression (P = 0.001). In univariate survival analysis,patients with GLUT1 expression demonstrated poor overall survival and disease-free survival (P = 0.047 and P = 0.021,respectively,log-rank test). CONCLUSION:GLUT1 expression was frequently increased in adenocarcinomas and metastatic lesions. GLUT1 expression was significantly correlated with poorer clinicopathologic phenotypes and survival of patients with colorectal adenocarcinomas.