为了保证井下工作安全,设计了一种CH4实时在线监测系统。在分析了CH4气体特征吸收光谱的基础上,系统采用静态傅里叶变换干涉具及柱面镜等组成。通过线阵CCD采集静态干涉条纹,由光谱分析算法求出各个波长上的光强衰减度,最后通过比尔-朗...为了保证井下工作安全,设计了一种CH4实时在线监测系统。在分析了CH4气体特征吸收光谱的基础上,系统采用静态傅里叶变换干涉具及柱面镜等组成。通过线阵CCD采集静态干涉条纹,由光谱分析算法求出各个波长上的光强衰减度,最后通过比尔-朗伯定理、浓度程长积公式等反演CH4气体的浓度。仿真计算了光源光强、出射光强与瓦斯浓度的函数关系,验证了采用5 m W的DFB激光器,可以保证变化区域基本线性。系统采用分子筛过滤处理的方法,克服了目前光谱检测系统无法在井下复杂环境应用的难题。实验显示,在5 cm的气室中,经分子筛过滤保护的光谱探测系统可以在潮湿、粉尘的环境中稳定工作。采用傅里叶变换光谱分析法求解CH4浓度时,最小探测精度可达0.01%。展开更多
A combination of high-field asymmetric waveform ion mobility spectrometry (FAIMS) with mass spectrometer (MS) was analyzed. FAIMS separates ions from the volatile organic compounds in the gas-phase as an ion-filte...A combination of high-field asymmetric waveform ion mobility spectrometry (FAIMS) with mass spectrometer (MS) was analyzed. FAIMS separates ions from the volatile organic compounds in the gas-phase as an ion-filter for MS. The sample ions were created at ambient pressure by ion source, which was equipped with a 10.6 eV UV discharge lamp (A=116.5 nm). The drift tube of FAIMS is composed of two parallel planar electrodes and the dimension is 10 mm×8 mm×0.5 mm. FAIMS was investigated when driven by the high-filed rectangular asymmetric waveform with the peak-to-peak voltage of 1.36 kV at the frequency of 1 MHz and the duty cycle of 30%. The acetone, the butanone, and their mixture were adopted to characterize the FAIMS-MS. The mass spectra obtained from MS illustrate that there are ion-molecular reactions between the ions and the sample neutral molecular. And the proton transfer behavior in the mixture of the acetone and the butanone is also observed. With the compensation voltage tuned from -30 V to 10 V with a step size of 0.1 V, the ion pre-separation before MS is realized.展开更多
A hierarchical wireless sensor networks(WSN) was proposed to estimate the plume source location.Such WSN can be of tremendous help to emergency personnel trying to protect people from terrorist attacks or responding t...A hierarchical wireless sensor networks(WSN) was proposed to estimate the plume source location.Such WSN can be of tremendous help to emergency personnel trying to protect people from terrorist attacks or responding to an accident.The entire surveillant field is divided into several small sub-regions.In each sub-region,the localization algorithm based on the improved particle filter(IPF) was performed to estimate the location.Some improved methods such as weighted centroid,residual resampling were introduced to the IPF algorithm to increase the localization performance.This distributed estimation method eliminates many drawbacks inherent with the traditional centralized optimization method.Simulation results show that localization algorithm is efficient for estimating the plume source location.展开更多
Many sensor network applications require location awareness,but it is often too expensive to equip a global positioning system(GPS) receiver for each network node.Hence,localization schemes for sensor networks typical...Many sensor network applications require location awareness,but it is often too expensive to equip a global positioning system(GPS) receiver for each network node.Hence,localization schemes for sensor networks typically use a small number of seed nodes that know their locations and protocols whereby other nodes estimate their locations from the messages they receive.For the inherent shortcomings of general particle filter(the sequential Monte Carlo method) this paper introduces particle swarm optimization and weighted centroid algorithm to optimize it.Based on improvement a distributed localization algorithm named WC-IPF(weighted centroid algorithm improved particle filter) has been proposed for localization.In this localization scheme the initial estimate position can be acquired by weighted centroid algorithm.Then the accurate position can be gotten via improved particle filter recursively.The extend simulation results show that the proposed algorithm is efficient for most condition.展开更多
文摘为了保证井下工作安全,设计了一种CH4实时在线监测系统。在分析了CH4气体特征吸收光谱的基础上,系统采用静态傅里叶变换干涉具及柱面镜等组成。通过线阵CCD采集静态干涉条纹,由光谱分析算法求出各个波长上的光强衰减度,最后通过比尔-朗伯定理、浓度程长积公式等反演CH4气体的浓度。仿真计算了光源光强、出射光强与瓦斯浓度的函数关系,验证了采用5 m W的DFB激光器,可以保证变化区域基本线性。系统采用分子筛过滤处理的方法,克服了目前光谱检测系统无法在井下复杂环境应用的难题。实验显示,在5 cm的气室中,经分子筛过滤保护的光谱探测系统可以在潮湿、粉尘的环境中稳定工作。采用傅里叶变换光谱分析法求解CH4浓度时,最小探测精度可达0.01%。
文摘A combination of high-field asymmetric waveform ion mobility spectrometry (FAIMS) with mass spectrometer (MS) was analyzed. FAIMS separates ions from the volatile organic compounds in the gas-phase as an ion-filter for MS. The sample ions were created at ambient pressure by ion source, which was equipped with a 10.6 eV UV discharge lamp (A=116.5 nm). The drift tube of FAIMS is composed of two parallel planar electrodes and the dimension is 10 mm×8 mm×0.5 mm. FAIMS was investigated when driven by the high-filed rectangular asymmetric waveform with the peak-to-peak voltage of 1.36 kV at the frequency of 1 MHz and the duty cycle of 30%. The acetone, the butanone, and their mixture were adopted to characterize the FAIMS-MS. The mass spectra obtained from MS illustrate that there are ion-molecular reactions between the ions and the sample neutral molecular. And the proton transfer behavior in the mixture of the acetone and the butanone is also observed. With the compensation voltage tuned from -30 V to 10 V with a step size of 0.1 V, the ion pre-separation before MS is realized.
基金National High Technology Research and Development Program of China(863Program,No.2004AA412050)
文摘A hierarchical wireless sensor networks(WSN) was proposed to estimate the plume source location.Such WSN can be of tremendous help to emergency personnel trying to protect people from terrorist attacks or responding to an accident.The entire surveillant field is divided into several small sub-regions.In each sub-region,the localization algorithm based on the improved particle filter(IPF) was performed to estimate the location.Some improved methods such as weighted centroid,residual resampling were introduced to the IPF algorithm to increase the localization performance.This distributed estimation method eliminates many drawbacks inherent with the traditional centralized optimization method.Simulation results show that localization algorithm is efficient for estimating the plume source location.
文摘Many sensor network applications require location awareness,but it is often too expensive to equip a global positioning system(GPS) receiver for each network node.Hence,localization schemes for sensor networks typically use a small number of seed nodes that know their locations and protocols whereby other nodes estimate their locations from the messages they receive.For the inherent shortcomings of general particle filter(the sequential Monte Carlo method) this paper introduces particle swarm optimization and weighted centroid algorithm to optimize it.Based on improvement a distributed localization algorithm named WC-IPF(weighted centroid algorithm improved particle filter) has been proposed for localization.In this localization scheme the initial estimate position can be acquired by weighted centroid algorithm.Then the accurate position can be gotten via improved particle filter recursively.The extend simulation results show that the proposed algorithm is efficient for most condition.