期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
分季节的太湖悬浮物遥感估测模型研究 被引量:40
1
作者 光洁 韦玉春 +3 位作者 黄家柱 李云梅 闻建光 郭建平 《湖泊科学》 EI CAS CSCD 北大核心 2007年第3期241-249,共9页
根据1996-2002年无锡太湖监测站的水质资料分析,太湖悬浮物具有季节性特征,因而分季节的悬浮物估测模型比单一的模型可能更加适合用来估测太湖全年的悬浮物浓度.在分析太湖水体光谱特征的基础上,根据太湖悬浮物的季节性分布特征,使用... 根据1996-2002年无锡太湖监测站的水质资料分析,太湖悬浮物具有季节性特征,因而分季节的悬浮物估测模型比单一的模型可能更加适合用来估测太湖全年的悬浮物浓度.在分析太湖水体光谱特征的基础上,根据太湖悬浮物的季节性分布特征,使用春夏秋冬四季的Landsat TM/ETM图像和准同步的水质采样数据,建立了太湖分季节的悬浮物估算模型.结果表明:估测因子(B2+B3)/(B2/B3)在舂、秋、冬三季都能很好地估测出悬浮物的浓度(R^3>0.52).夏季由于叶绿素的干扰性较大,悬浮物的估测效果不理想.冬季的估测效果最好(R^2=0.81),模型为lnSS=14.656×(B2+B3)/ (B2/B3)+1.661,其中,ln SS表示悬浮物取自然对数后的值,B2、B3为TM/ETM图像经过6S大气校正、3×3低通滤波后第2、3波段的反射率值. 展开更多
关键词 悬浮物 分季节模型 遥感 实测光谱 太湖
下载PDF
Impacts of Vegetation on the Intraseasonal Oscillation Simulated by the Community Atmosphere Model (CAM3)
2
作者 HAN Ying XU Zhong-Feng 《Atmospheric and Oceanic Science Letters》 2011年第1期1-6,共6页
The influences of vegetation on intraseasonal oscillation (ISO) were examined using the Community Atmosphere Model version 3 (CAM3). Two 15-year numerical experiments were completed: the first was performed with ... The influences of vegetation on intraseasonal oscillation (ISO) were examined using the Community Atmosphere Model version 3 (CAM3). Two 15-year numerical experiments were completed: the first was performed with a realistic vegetation distribution (VEG run), and the second was identical to the VEG run except without land vegetation (NOVEG run). Generally speak- ing, CAM3 was able to reproduce the spatial distribution of the ISO, but the ISO intensity in the simulation was much weaker than that observed in nature: the 1SO has a relatively much stronger signal. A comparison of the VEG run with the NOVEG run revealed that the presence of vegetation usually produces a weak ISO. The vegetation effects on ISO intensity were significant over West Africa and South Asia, especially in the summer half-year. Vegetation also plays an important role in modulating ISO propagation. The eastward propagation of the ISO in the VEG run was clearer than that in the NOVEG run over the West African and Maritime Continent regions. The northward propagation of the ISO in the VEG run was more consistent with observation than that in the NOVEG run. 展开更多
关键词 VEGETATION intraseasonal oscillation ISO intensity ISO propagation community atmosphere model
下载PDF
Predicting Western Pacific Subtropical High Using a Combined Tropical Indian Ocean Sea Surface Temperature Forecast 被引量:2
3
作者 WANG Li-Wei ZHENG Fei ZHU Jiang 《Atmospheric and Oceanic Science Letters》 CSCD 2013年第6期405-409,共5页
Weather and climate in East China are closely related to the variability of the western Pacific subtropical high(WPSH), which is an important part of the Asian monsoon system. The WPSH prediction in spring and summer ... Weather and climate in East China are closely related to the variability of the western Pacific subtropical high(WPSH), which is an important part of the Asian monsoon system. The WPSH prediction in spring and summer is a critical component of rainfall forecasting during the summer flood season in China. Although many attempts have been made to predict WPSH variability, its predictability remains limited in practice due to the complexity of the WPSH evolution. Many studies have indicated that the sea surface temperature(SST) over the tropical Indian Ocean has a significant effect on WPSH variability. In this paper, a statistical model is developed to forecast the monthly variation in the WPSH during the spring and summer seasons on the basis of its relationship with SST over the tropical Indian Ocean. The forecasted SST over the tropical Indian Ocean is the predictor in this model, which differs significantly from other WPSH prediction methods. A 26-year independent hindcast experiment from 1983 to 2008 is conducted and validated in which the WPSH prediction driven by the combined forecasted SST is compared with that driven by the persisted SST. Results indicate that the skill score of the WPSH prediction driven by the combined forecasted SST is substantial. 展开更多
关键词 western Pacific subtropical high SST tropical Indian Ocean statistical prediction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部