The particle image velocity (PIV) technique is introduced to measure theatomization angle, particle size and size distribution of the atomization coal water paste (CWP) ina cold state model. Due to high-density atomiz...The particle image velocity (PIV) technique is introduced to measure theatomization angle, particle size and size distribution of the atomization coal water paste (CWP) ina cold state model. Due to high-density atomization spray, wide size distribution and large-scaleexperimental setup in CWP experiments, a commercial PIV system is updated with a 600-mm-long focallength camera and a convex lens used with a laser beam. This long focal length camera makes the PIVsystem capable of taking the images of micro particles. The measured minimum diameter is about 15μm. The convex lens has the benefit of centralising the sector laser beam of the PIV system, sothat the measurement window of the high density CWP field sectored by the laser beam is brighter andthe images taken by the camera are clearer. The experimental results show that it is a useful andefficient tool for the PIV technique to measure the atomization prosperities of CWP.展开更多
A thermal-mechanical and micro-macro coupled finite element(FE) model for the hot extrusion process of large-scale thick-walled Inconel 625 pipe was developed based on the DEFORM-2D platform.Then,the influence rules...A thermal-mechanical and micro-macro coupled finite element(FE) model for the hot extrusion process of large-scale thick-walled Inconel 625 pipe was developed based on the DEFORM-2D platform.Then,the influence rules of the key extrusion parameters on the average grain size and grain uniformity of the extruded pipe were revealed.The results show that with the increase of initial billet temperature,extrusion speed and friction coefficient,the grain uniformity is firstly improved and then deteriorated.Larger extrusion ratio leads to more uniform grain distribution.With the increase of initial billet temperature,the average grain size of the pipe first decreases and then increases.Additionally,larger extrusion ratio can bring smaller average grain size.The extrusion speed and friction coefficient have slight effects on the average grain size of the extruded pipe.展开更多
Application of particle image velocity (PIV) techniques for measuringparticle size distribution and total number in an activation chamber of desulfurization system isintroduced. Watersheld algorithm is used to choose ...Application of particle image velocity (PIV) techniques for measuringparticle size distribution and total number in an activation chamber of desulfurization system isintroduced. Watersheld algorithm is used to choose the suitable initial gray level threshold whichis used to change the gray level images taken by PIV to black and white ones, then every particle inan image is isolated totally. For every isolating particle, its contour is tracked by the edgeenhancement filter function and kept by Freeman s chain code. Based on a set of particle s chincode, its size and size distribution are calculated and sorted. Finally, the experimental data ofcalcium particles and water drops, separately injected into the activation chamber, and the erroranalysis of data are given out.展开更多
To investigate influence of welding parameters on weld bead geometry in underwater wet flux cored arc welding (FCAW), orthogonal experiments of underwater wet FCAW were conducted in the hyperbaric chamber at water d...To investigate influence of welding parameters on weld bead geometry in underwater wet flux cored arc welding (FCAW), orthogonal experiments of underwater wet FCAW were conducted in the hyperbaric chamber at water depth from 0.2 m to 60 m and mathematical models were developed by multiple curvilinear regression method from the experimental data. Sensitivity analysis was then performed to predict the bead geometry and evaluate the influence of welding parameters. The results reveal that water depth has a greater influence on bead geometry than other welding parameters when welding at a water depth less than 10 m. At a water depth deeper than 10 m, a change in travel speed affects the bead geometry more strongly than other welding parameters.展开更多
This study presents a meso-criterion of dynamic fracture, on the basis of stress in integral form In such way the difficulty due to the singularity of stress distribution at the crack tip is overcome. A micro-paramete...This study presents a meso-criterion of dynamic fracture, on the basis of stress in integral form In such way the difficulty due to the singularity of stress distribution at the crack tip is overcome. A micro-parameter, the atom radius, is introduced into the criterion.Meanwhile a characteristic time concept is taken into account for describing the inertia effect of material. The criterion reveals The criterion reveals the effects of loading rate, defect and sample geometry,material constants including the micro-structure parameter.展开更多
The effect of time and environment on the dimension precision and mass of LOM prototypes was experimentally investigated.It is to identify the stability of the dimension of LOM prototypes after forming.The results sho...The effect of time and environment on the dimension precision and mass of LOM prototypes was experimentally investigated.It is to identify the stability of the dimension of LOM prototypes after forming.The results show that the dimension and the mass tendency to grow,which is mainly caused by elastic recovery and moisture absorption and is characterized principally by the growth of Z dimension.Self restraint can be a significant factor to influence Z growth of LOM prototypes.展开更多
The particle size distribution, heavy mineral constituents and rare earth elements (REE) characteristics of the Quaternary red clay of southern Anhui Province were studied to explore the origin of the clay. The resul...The particle size distribution, heavy mineral constituents and rare earth elements (REE) characteristics of the Quaternary red clay of southern Anhui Province were studied to explore the origin of the clay. The results showed that the clay had some properties of areolian deposits, which could be compared with those of the loess in North China; and its chondrite normalized curves of REE were similar to those of the Xiashu loess, implying that they shared the same origin. It was concluded in combination with the results reported by other researchers that the Quaternary red clay of southern Anhui Province originated from aeolian deposits, and this could reveal the cycles of warm and cold climates in the area during the Quaternary period.展开更多
Platinum and palladium(PtPd)alloy nanoparticles(NPs)are excellent catalysts for direct methanol fuel cells.In this study,we developed PtPd alloy NPs through the co‐reduction of K2PtCl4and Na2PdCl4in a polyol synthesi...Platinum and palladium(PtPd)alloy nanoparticles(NPs)are excellent catalysts for direct methanol fuel cells.In this study,we developed PtPd alloy NPs through the co‐reduction of K2PtCl4and Na2PdCl4in a polyol synthesis environment.During the reaction,the feed molar ratio of the two precursors was carried over to the final products,which have a narrow size distribution with a mean size of approximately4nm.The catalytic activity for methanol oxidation reactions possible depends closely on the composition of as‐prepared PtPd alloy NPs,and the NPs with a Pt atomic percentage of approximately75%result in higher activity and stability with a mass specific activity that is7times greater than that of commercial Pt/C catalysts.The results indicate that through composition control,PtPd alloy NPs can improve the effectiveness of catalytic performance.展开更多
Soil water retention characteristics are the key information required in hydrological modeling. Frac-tal models provide a practical alternative for indirectly estimating soil water retention characteristics frompartic...Soil water retention characteristics are the key information required in hydrological modeling. Frac-tal models provide a practical alternative for indirectly estimating soil water retention characteristics fromparticle-size distribution data. Predictive capabilities of three fractal models, i.e, Tyler-Wheatcraft model,Rieu-Sposito model, and Brooks-Corey model, were fully evaluated in this work using experimental datafrom an international database and literature. Particle-size distribution data were firstly interpolated into20 classes using a van Genuchten-type equation. Fractal dimensions of the tortuous pore wall and the poresurface were then calculated from the detailed particle-size distribution and incorporated as a parameter infractal water retention models. Comparisons between measured and model-estimated water retention cha-racteristics indicated that these three models were applicable to relatively different soil textures and pressurehead ranges. Tyler-Wheatcraft and Brooks-Corey models led to reasonable agreements for both coarse- andmedium-textured soils, while the latter showed applicability to a broader texture range. In contrast, Rieu-Sposito model was more suitable for fine-textured soils. Fractal models produced a better estimation of watercontents at low pressure heads than at high pressure heads.展开更多
A lightweight aggregate concrete-filled steel tube(LACFST) spatial truss beam was tested under bending load. The performance was studied by the analysis of the beam deflection and strains in its chords and webs. Accor...A lightweight aggregate concrete-filled steel tube(LACFST) spatial truss beam was tested under bending load. The performance was studied by the analysis of the beam deflection and strains in its chords and webs. According to the test results, several assumptions were made to deduce the bearing capacity calculation method based on the force balance of the whole section. An optimal dimension relationship for the truss beam chords was proposed and verified by finite element analysis. Results show that the LACFST spatial truss beam failed after excessive deflection. The strain distribution agreed with Bernoulli-Euler theoretical prediction. The truss beam flexural bearing capacity calculation results matched test evidence with only a 3% difference between the two. Finite element analyses with different chord dimensions show that the ultimate bearing capacity increases as the chord dimensions increase when the chords have a diameter smaller than optimal one; otherwise, it remains almost unchanged as the chord dimensions increase.展开更多
Size distribution of nano-carbides produced by duplex treatments of surface nanocrystallization(by surface severe plastic deformation) and plasma electrolytic carburizing on CP-Ti was investigated.Skewness and kurtosi...Size distribution of nano-carbides produced by duplex treatments of surface nanocrystallization(by surface severe plastic deformation) and plasma electrolytic carburizing on CP-Ti was investigated.Skewness and kurtosis of Gussian shape distribution curves were studied and the effect of time was determined.The usage of longer time is more suitable for achieving less size of complex nano-carbides.Surface roughness of treated samples was measured.It is observed that there is an optimum level for time on surface roughness increasing(difference between two measured data).展开更多
The CO2 adsorption data may show more than one section in the Dubinin-Radushkevich-Kaganer(DRK) plot if samples had been over-activated. Each section in the plot represents a range of pore size. The whole DRK plot pro...The CO2 adsorption data may show more than one section in the Dubinin-Radushkevich-Kaganer(DRK) plot if samples had been over-activated. Each section in the plot represents a range of pore size. The whole DRK plot provided information on the pore size distribution(PSD) of a sample, which may be used to monitor the effect of activation conditions in activation processes.展开更多
The basic principle of fly ash triboelectrification is analysed. The mineral electrical index and test method are introduced. The electric difference of different mineral composition of fly ash is discussed by analysi...The basic principle of fly ash triboelectrification is analysed. The mineral electrical index and test method are introduced. The electric difference of different mineral composition of fly ash is discussed by analysis of chemical and mineral composition of fly ash in Xinwen power plant. The dielectric constant and charge-mass ratio of carbon and ash of fly ash are tested. Combined with the experimental study on rotary triboelectrostatic separation, the charged characteristic of fly ash particles with different size is gained. The results show that the dielectric constant of fly ash with different grain size decreased with the decrease of particle size, which lead to the poor electrical conductivity, Thus it can be seen that par- ticle size plays a leading role in conductivity, The charge of carbon and ash with each size increased with the decreased of particle size; and the charge-mass ratio between carbon and ash with the same size lar- ger with the decrease of size, which indicated that the finer particle size, the more favorable for triboelec- trification separation. In the same conditions, the best decarburization effect is realized when the particle size ranges from 0.038 to 0.074 ram, whose decarbonization rate and efficiency index reached 38.93% and 120.83% respectively.展开更多
This paper presents a theoretical method for predicting the effective diffusion coefficient of macromolecules in the microporous membrfines in view of the effects of molecular dimension and configuration. On the basi...This paper presents a theoretical method for predicting the effective diffusion coefficient of macromolecules in the microporous membrfines in view of the effects of molecular dimension and configuration. On the basis of the hindered diffusion theory of spherical neutral macromolecules in a micropore of a long cylinder, the effects of molecular dimension and configuration are studied by defining two molecular dimensions:the mean projected radius to predict the concentration partition and the ' hydrodynamically equivalent sphere' radius to evaluate the hydrodynamic reverse drag force. The quantitative comparison shows that the effective diffusion coefficients for different macromolecules predicted by the present method are more consistent with the available published experimental data.展开更多
An integrated simulation of powder effects on particle temperature and microstructural evolution in laser directed energy deposition additive manufacturing process was carried out.The spatial distribution of the flyin...An integrated simulation of powder effects on particle temperature and microstructural evolution in laser directed energy deposition additive manufacturing process was carried out.The spatial distribution of the flying powder particles was simulated by the discrete element method to calculate the energy for the flying powder particles under the laser−particle interaction with electromagnetic wave analysis.Combined with the phase field method,the influence of particle size on the microstructural evolution was studied.The microstructural evolution is validated through comparison with experimental observation.Results indicate that the narrow particle size distribution is beneficial to obtaining a more uniform temperature distribution on the deposited layers and forming smaller equiaxed grains near the side surfaces of the sample.Appropriate powder particle size is beneficial to the conversion of the electromagnetic energy into heat.Particles with small size are recommended to form equiaxed grains and to improve product quality.Appropriate powder flow rate improves the laser energy efficiency,and higher powder flow rate leads to more uniform equiaxed grains on both sides of the cross-section.展开更多
Hydrodynamic cavitation,a newly developed process intensification technique,has demonstrated immense potential for intensifying diverse physical and chemical processes.In this study,hydrodynamic cavitation was explore...Hydrodynamic cavitation,a newly developed process intensification technique,has demonstrated immense potential for intensifying diverse physical and chemical processes.In this study,hydrodynamic cavitation was explored as an efficient method for the formation of sub-100 nm oil-in-water(O/W) emulsions with high stability.O/W emulsion with an average droplet size of 27 nm was successfully prepared.The average droplet size of O/W emulsions decreased with the increase of the inlet pressure,number of cavitation passes and surfactant concentration.The formed emulsion exhibited admirable physical stability during 8 months.Moreover,the hydrodynamic cavitation method can be generalized to fabricate large varieties of O/W emulsions,which showed great potential for large-scale formation of O/W emulsions with lower energy consumption.展开更多
The influence of rock strength properties on Jaw Crusher performance was carried out to determine the effect of rock strength on crushing time and grain size distribution of the rocks.Investigation was conducted on fo...The influence of rock strength properties on Jaw Crusher performance was carried out to determine the effect of rock strength on crushing time and grain size distribution of the rocks.Investigation was conducted on four different rock samples namely marble,dolomite,limestone and granite which were representatively selected from fragmented lumps in quarries.Unconfined compressive strength and Point load tests were carried out on each rock sample as well as crushing time and size analysis.The results of the strength parameters of each sample were correlated with the crushing time and the grain size distribution of the rock types.The results of the strength tests show that granite has the highest mean value of 101.67 MPa for Unconfined Compressive Strength(UCS) test,6.43 MPa for Point Load test while dolomite has the least mean value of 30.56 MPa for UCS test and 0.95 MPa for Point Load test.According to the International Society for Rock Mechanic(ISRM) standard,the granite rock sample may be classified as having very high strength and dolomite rock sample,low strength.Also,the granite rock has the highest crushing time(21.0 s) and dolomite rock has the least value(5.0 s).Based on the results of the investigation,it was found out that there is a great influence of strength properties on crushing time of rock types.展开更多
Conventional feature description methods have large errors in froth features due to the fact that the image during the zinc flotation process of froth flotation is dynamic,and the existing image features rarely have t...Conventional feature description methods have large errors in froth features due to the fact that the image during the zinc flotation process of froth flotation is dynamic,and the existing image features rarely have time series information.Based on the conventional froth size distribution characteristics,this paper proposes a size trend core feature(STCF)considering the froth size distribution,i.e.,a feature centered on the time series of the froth size distribution.The core features of the trend are extracted,the inter-frame change factor and the inter-frame stability factor are given and two calculation methods of the feature factors are proposed.Meanwhile,the STCF feature algorithm was established based on the core features by adding the inter-frame change factor and the inter-frame stability factor.Finally,a flotation condition recognition model based on BP neural network was established.The experiments show that the recognition model has achieved excellent results,proving that the method proposed effectively overcomes the limitation of the lack of dynamic information in the existing traditional size distribution features and the introduction of the two factors can improve the classification accuracy to varying degrees.展开更多
文摘The particle image velocity (PIV) technique is introduced to measure theatomization angle, particle size and size distribution of the atomization coal water paste (CWP) ina cold state model. Due to high-density atomization spray, wide size distribution and large-scaleexperimental setup in CWP experiments, a commercial PIV system is updated with a 600-mm-long focallength camera and a convex lens used with a laser beam. This long focal length camera makes the PIVsystem capable of taking the images of micro particles. The measured minimum diameter is about 15μm. The convex lens has the benefit of centralising the sector laser beam of the PIV system, sothat the measurement window of the high density CWP field sectored by the laser beam is brighter andthe images taken by the camera are clearer. The experimental results show that it is a useful andefficient tool for the PIV technique to measure the atomization prosperities of CWP.
基金Project(2009ZX04005-031-11)supported by the Major National Science and Technology Special Project of ChinaProject(KP200911)supported by the Research Fund of State Key Laboratory of Solidification Processing of ChinaProject(B08040)supported by the"111"Project of China
文摘A thermal-mechanical and micro-macro coupled finite element(FE) model for the hot extrusion process of large-scale thick-walled Inconel 625 pipe was developed based on the DEFORM-2D platform.Then,the influence rules of the key extrusion parameters on the average grain size and grain uniformity of the extruded pipe were revealed.The results show that with the increase of initial billet temperature,extrusion speed and friction coefficient,the grain uniformity is firstly improved and then deteriorated.Larger extrusion ratio leads to more uniform grain distribution.With the increase of initial billet temperature,the average grain size of the pipe first decreases and then increases.Additionally,larger extrusion ratio can bring smaller average grain size.The extrusion speed and friction coefficient have slight effects on the average grain size of the extruded pipe.
基金The Special Funds for State Key Projects for Fun- damental Research (G1999022201-04).
文摘Application of particle image velocity (PIV) techniques for measuringparticle size distribution and total number in an activation chamber of desulfurization system isintroduced. Watersheld algorithm is used to choose the suitable initial gray level threshold whichis used to change the gray level images taken by PIV to black and white ones, then every particle inan image is isolated totally. For every isolating particle, its contour is tracked by the edgeenhancement filter function and kept by Freeman s chain code. Based on a set of particle s chincode, its size and size distribution are calculated and sorted. Finally, the experimental data ofcalcium particles and water drops, separately injected into the activation chamber, and the erroranalysis of data are given out.
基金Projects(51175185,50705030)supported by the National Natural Science Foundation of ChinaProject(2012ZZ0052)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(9151064101000065)supported by the Natural Science Foundation of Guangdong Province,China
文摘To investigate influence of welding parameters on weld bead geometry in underwater wet flux cored arc welding (FCAW), orthogonal experiments of underwater wet FCAW were conducted in the hyperbaric chamber at water depth from 0.2 m to 60 m and mathematical models were developed by multiple curvilinear regression method from the experimental data. Sensitivity analysis was then performed to predict the bead geometry and evaluate the influence of welding parameters. The results reveal that water depth has a greater influence on bead geometry than other welding parameters when welding at a water depth less than 10 m. At a water depth deeper than 10 m, a change in travel speed affects the bead geometry more strongly than other welding parameters.
文摘This study presents a meso-criterion of dynamic fracture, on the basis of stress in integral form In such way the difficulty due to the singularity of stress distribution at the crack tip is overcome. A micro-parameter, the atom radius, is introduced into the criterion.Meanwhile a characteristic time concept is taken into account for describing the inertia effect of material. The criterion reveals The criterion reveals the effects of loading rate, defect and sample geometry,material constants including the micro-structure parameter.
文摘The effect of time and environment on the dimension precision and mass of LOM prototypes was experimentally investigated.It is to identify the stability of the dimension of LOM prototypes after forming.The results show that the dimension and the mass tendency to grow,which is mainly caused by elastic recovery and moisture absorption and is characterized principally by the growth of Z dimension.Self restraint can be a significant factor to influence Z growth of LOM prototypes.
文摘The particle size distribution, heavy mineral constituents and rare earth elements (REE) characteristics of the Quaternary red clay of southern Anhui Province were studied to explore the origin of the clay. The results showed that the clay had some properties of areolian deposits, which could be compared with those of the loess in North China; and its chondrite normalized curves of REE were similar to those of the Xiashu loess, implying that they shared the same origin. It was concluded in combination with the results reported by other researchers that the Quaternary red clay of southern Anhui Province originated from aeolian deposits, and this could reveal the cycles of warm and cold climates in the area during the Quaternary period.
基金supported by the National Natural Science Foundation of China (21373272)~~
文摘Platinum and palladium(PtPd)alloy nanoparticles(NPs)are excellent catalysts for direct methanol fuel cells.In this study,we developed PtPd alloy NPs through the co‐reduction of K2PtCl4and Na2PdCl4in a polyol synthesis environment.During the reaction,the feed molar ratio of the two precursors was carried over to the final products,which have a narrow size distribution with a mean size of approximately4nm.The catalytic activity for methanol oxidation reactions possible depends closely on the composition of as‐prepared PtPd alloy NPs,and the NPs with a Pt atomic percentage of approximately75%result in higher activity and stability with a mass specific activity that is7times greater than that of commercial Pt/C catalysts.The results indicate that through composition control,PtPd alloy NPs can improve the effectiveness of catalytic performance.
基金Project supported by the National Natural Science Foundation of China (No, 49971041), the National Key Basic Research Support Foundation (NKBRSF) of China (No. G1999011803) the Director Foundation of the Institute of Soil Science, CAS (No. ISSDF0004).
文摘Soil water retention characteristics are the key information required in hydrological modeling. Frac-tal models provide a practical alternative for indirectly estimating soil water retention characteristics fromparticle-size distribution data. Predictive capabilities of three fractal models, i.e, Tyler-Wheatcraft model,Rieu-Sposito model, and Brooks-Corey model, were fully evaluated in this work using experimental datafrom an international database and literature. Particle-size distribution data were firstly interpolated into20 classes using a van Genuchten-type equation. Fractal dimensions of the tortuous pore wall and the poresurface were then calculated from the detailed particle-size distribution and incorporated as a parameter infractal water retention models. Comparisons between measured and model-estimated water retention cha-racteristics indicated that these three models were applicable to relatively different soil textures and pressurehead ranges. Tyler-Wheatcraft and Brooks-Corey models led to reasonable agreements for both coarse- andmedium-textured soils, while the latter showed applicability to a broader texture range. In contrast, Rieu-Sposito model was more suitable for fine-textured soils. Fractal models produced a better estimation of watercontents at low pressure heads than at high pressure heads.
基金Project(51208176)supported by the National Natural Science Foundation of ChinaProjects(2012M511187,2013T60493)supported by the China Postdoctoral Science FoundationProject(2015B17414)supported by the Fundamental Research Funds for the Central Universities,China
文摘A lightweight aggregate concrete-filled steel tube(LACFST) spatial truss beam was tested under bending load. The performance was studied by the analysis of the beam deflection and strains in its chords and webs. According to the test results, several assumptions were made to deduce the bearing capacity calculation method based on the force balance of the whole section. An optimal dimension relationship for the truss beam chords was proposed and verified by finite element analysis. Results show that the LACFST spatial truss beam failed after excessive deflection. The strain distribution agreed with Bernoulli-Euler theoretical prediction. The truss beam flexural bearing capacity calculation results matched test evidence with only a 3% difference between the two. Finite element analyses with different chord dimensions show that the ultimate bearing capacity increases as the chord dimensions increase when the chords have a diameter smaller than optimal one; otherwise, it remains almost unchanged as the chord dimensions increase.
基金Partial work of this project funded by National Elite Foundation of Iran and Iranian Nanotechnology Initiative is appreciated.
文摘Size distribution of nano-carbides produced by duplex treatments of surface nanocrystallization(by surface severe plastic deformation) and plasma electrolytic carburizing on CP-Ti was investigated.Skewness and kurtosis of Gussian shape distribution curves were studied and the effect of time was determined.The usage of longer time is more suitable for achieving less size of complex nano-carbides.Surface roughness of treated samples was measured.It is observed that there is an optimum level for time on surface roughness increasing(difference between two measured data).
基金Supported by the National Natural Science Foundation of China(No.29936100).
文摘The CO2 adsorption data may show more than one section in the Dubinin-Radushkevich-Kaganer(DRK) plot if samples had been over-activated. Each section in the plot represents a range of pore size. The whole DRK plot provided information on the pore size distribution(PSD) of a sample, which may be used to monitor the effect of activation conditions in activation processes.
基金supported by the National Natural Science Foundation of China(Nos.51274200 and 51221462)
文摘The basic principle of fly ash triboelectrification is analysed. The mineral electrical index and test method are introduced. The electric difference of different mineral composition of fly ash is discussed by analysis of chemical and mineral composition of fly ash in Xinwen power plant. The dielectric constant and charge-mass ratio of carbon and ash of fly ash are tested. Combined with the experimental study on rotary triboelectrostatic separation, the charged characteristic of fly ash particles with different size is gained. The results show that the dielectric constant of fly ash with different grain size decreased with the decrease of particle size, which lead to the poor electrical conductivity, Thus it can be seen that par- ticle size plays a leading role in conductivity, The charge of carbon and ash with each size increased with the decreased of particle size; and the charge-mass ratio between carbon and ash with the same size lar- ger with the decrease of size, which indicated that the finer particle size, the more favorable for triboelec- trification separation. In the same conditions, the best decarburization effect is realized when the particle size ranges from 0.038 to 0.074 ram, whose decarbonization rate and efficiency index reached 38.93% and 120.83% respectively.
文摘This paper presents a theoretical method for predicting the effective diffusion coefficient of macromolecules in the microporous membrfines in view of the effects of molecular dimension and configuration. On the basis of the hindered diffusion theory of spherical neutral macromolecules in a micropore of a long cylinder, the effects of molecular dimension and configuration are studied by defining two molecular dimensions:the mean projected radius to predict the concentration partition and the ' hydrodynamically equivalent sphere' radius to evaluate the hydrodynamic reverse drag force. The quantitative comparison shows that the effective diffusion coefficients for different macromolecules predicted by the present method are more consistent with the available published experimental data.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(No.11572074)the Liaoning Provincial Natural Science Foundation,China(No.2019-KF-05-07)。
文摘An integrated simulation of powder effects on particle temperature and microstructural evolution in laser directed energy deposition additive manufacturing process was carried out.The spatial distribution of the flying powder particles was simulated by the discrete element method to calculate the energy for the flying powder particles under the laser−particle interaction with electromagnetic wave analysis.Combined with the phase field method,the influence of particle size on the microstructural evolution was studied.The microstructural evolution is validated through comparison with experimental observation.Results indicate that the narrow particle size distribution is beneficial to obtaining a more uniform temperature distribution on the deposited layers and forming smaller equiaxed grains near the side surfaces of the sample.Appropriate powder particle size is beneficial to the conversion of the electromagnetic energy into heat.Particles with small size are recommended to form equiaxed grains and to improve product quality.Appropriate powder flow rate improves the laser energy efficiency,and higher powder flow rate leads to more uniform equiaxed grains on both sides of the cross-section.
文摘Hydrodynamic cavitation,a newly developed process intensification technique,has demonstrated immense potential for intensifying diverse physical and chemical processes.In this study,hydrodynamic cavitation was explored as an efficient method for the formation of sub-100 nm oil-in-water(O/W) emulsions with high stability.O/W emulsion with an average droplet size of 27 nm was successfully prepared.The average droplet size of O/W emulsions decreased with the increase of the inlet pressure,number of cavitation passes and surfactant concentration.The formed emulsion exhibited admirable physical stability during 8 months.Moreover,the hydrodynamic cavitation method can be generalized to fabricate large varieties of O/W emulsions,which showed great potential for large-scale formation of O/W emulsions with lower energy consumption.
文摘The influence of rock strength properties on Jaw Crusher performance was carried out to determine the effect of rock strength on crushing time and grain size distribution of the rocks.Investigation was conducted on four different rock samples namely marble,dolomite,limestone and granite which were representatively selected from fragmented lumps in quarries.Unconfined compressive strength and Point load tests were carried out on each rock sample as well as crushing time and size analysis.The results of the strength parameters of each sample were correlated with the crushing time and the grain size distribution of the rock types.The results of the strength tests show that granite has the highest mean value of 101.67 MPa for Unconfined Compressive Strength(UCS) test,6.43 MPa for Point Load test while dolomite has the least mean value of 30.56 MPa for UCS test and 0.95 MPa for Point Load test.According to the International Society for Rock Mechanic(ISRM) standard,the granite rock sample may be classified as having very high strength and dolomite rock sample,low strength.Also,the granite rock has the highest crushing time(21.0 s) and dolomite rock has the least value(5.0 s).Based on the results of the investigation,it was found out that there is a great influence of strength properties on crushing time of rock types.
基金Project(U1701261)supported by the National Science Foundation of China,Guangdong Joint Fund of Key ProjectsProject(61771492)supported by the National Natural Science Foundation of ChinaProject(2018GK4016)supported by Hunan Province Strategic Emerging Industry Science and Technology Research and Major Science and Technology Achievement Transformation Project,China。
文摘Conventional feature description methods have large errors in froth features due to the fact that the image during the zinc flotation process of froth flotation is dynamic,and the existing image features rarely have time series information.Based on the conventional froth size distribution characteristics,this paper proposes a size trend core feature(STCF)considering the froth size distribution,i.e.,a feature centered on the time series of the froth size distribution.The core features of the trend are extracted,the inter-frame change factor and the inter-frame stability factor are given and two calculation methods of the feature factors are proposed.Meanwhile,the STCF feature algorithm was established based on the core features by adding the inter-frame change factor and the inter-frame stability factor.Finally,a flotation condition recognition model based on BP neural network was established.The experiments show that the recognition model has achieved excellent results,proving that the method proposed effectively overcomes the limitation of the lack of dynamic information in the existing traditional size distribution features and the introduction of the two factors can improve the classification accuracy to varying degrees.