期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于分层对齐迁移学习的锂离子电池容量估计
1
作者 翟智 王福金 +3 位作者 邸一 马珮羽 赵志斌 陈雪峰 《储能科学与技术》 CAS CSCD 北大核心 2023年第4期1223-1233,共11页
精准的容量估计对锂离子电池健康管理和预测性维护具有重要意义。近年来,数据驱动的方法被广泛应用于锂离子电池容量估计,然而现有的数据驱动方法大多假设训练和测试数据服从相同分布,当此假设不满足时,模型的预测精度快速下降。现有的... 精准的容量估计对锂离子电池健康管理和预测性维护具有重要意义。近年来,数据驱动的方法被广泛应用于锂离子电池容量估计,然而现有的数据驱动方法大多假设训练和测试数据服从相同分布,当此假设不满足时,模型的预测精度快速下降。现有的基于迁移学习的锂离子电池容量估计方法旨在对齐源域和目标域的整体分布,而忽略了不同层内的特征的可迁移性。针对以上问题,研究了深度迁移学习方法不同层之间的特征可迁移属性,提出了基于分层对齐迁移学习(hierarchical alignment transfer learning,HATL)的锂离子电池容量估计方法。首先,构建了一个基于卷积神经网络的特征提取器,考虑不同层特征的可迁移性,对不同层特征施加最大均值差异约束和通道注意力一致性约束,使得特征提取器从源域和目标域提取到的特征相似且模型更加关注域不变特征;然后,特征经过一个预测器得到容量估计值。在公开的锂电池数据集上进行充分验证,并与其他方法进行对比,结果表明,本文所提的HATL方法具有更高的估计精度,明显优于其他方法。证明了迁移学习方法在跨工况容量估计任务中的有效性和优越性。 展开更多
关键词 锂离子电池 容量估计 分层对齐迁移学习 最大均值差异 通道注意力一致性
下载PDF
基于回译和分层对齐的医疗专家-外行风格迁移的并行句子增强方法
2
作者 吕焯宸 李孝忠 《天津科技大学学报》 CAS 2023年第5期74-80,共7页
医疗专家-外行风格迁移任务旨在将医疗专家的知识和语言转化为外行易于理解的语言风格,解决医疗专业知识传播中的语言障碍,使医疗知识能够更加广泛地被外行所理解和应用,帮助医疗工作者更好地与患者和家属进行沟通,提高医疗工作的效率... 医疗专家-外行风格迁移任务旨在将医疗专家的知识和语言转化为外行易于理解的语言风格,解决医疗专业知识传播中的语言障碍,使医疗知识能够更加广泛地被外行所理解和应用,帮助医疗工作者更好地与患者和家属进行沟通,提高医疗工作的效率和质量。目前医疗专家-外行风格迁移任务可用的数据集匮乏,并且没有可用的并行数据集。基于回译和文本分层对齐方法,提出一种简单的无监督方法,这种方法可以从两种不同文本风格(专家风格和外行风格)的可比语料中提取伪并行句子对。将使用此方法获得的并行句子对与MSD数据集、SimpWiki数据集进行对比,验证了方法的有效性。结果表明,本文方法提取的并行句子对的效果优于SimpWiki数据集,可以对目前匮乏的并行数据集进行有效补充。 展开更多
关键词 回译 分层对齐 文本风格迁移 专家-外行风格迁移
下载PDF
基于分层特征对齐网络的小样本马铃薯病害叶片检测 被引量:1
3
作者 牛玉霞 孙宙红 +2 位作者 任伟 陈林琳 陈莉莉 《中国农机化学报》 北大核心 2024年第2期250-258,共9页
针对传统马铃薯病害叶片检测方法过度依赖大量训练数据以及对未知病害识别泛化性不强的问题,提出一种基于分层特征对齐网络的小样本马铃薯病害叶片检测模型。首先,收集并整理包含多种病害类型的弱标注马铃薯病害叶片数据集。其次,在支... 针对传统马铃薯病害叶片检测方法过度依赖大量训练数据以及对未知病害识别泛化性不强的问题,提出一种基于分层特征对齐网络的小样本马铃薯病害叶片检测模型。首先,收集并整理包含多种病害类型的弱标注马铃薯病害叶片数据集。其次,在支持分支中建立文本语义和视觉语义的多模态双层特征语义表示,并利用预训练网络生成多个候选框。再次,利用卷积神经网络将候选框区域映射到深度特征空间,并借助无参数的度量方法实现文本语义与视觉语义的特征对齐。最后,将查询分支中的未知类病害图片与多模态视觉和文本语义关联集进行度量计算,根据相似度值快速给出待测图片中未知新类的病害类别。通过在自建的马铃薯病害叶片数据集和开源数据集上进行测试,所提出模型分别可以实现93.55%和96.35%的识别精度,在跨域数据集上可以实现95.15%和94.06%的识别精度,优于当前经典的目标检测模型,具有一定的实际应用价值。 展开更多
关键词 马铃薯病害 叶片检测 分层特征对齐网络 文本语义 视觉语义
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部