期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Goldfish:基于矩阵分解的大规模RDF数据存储与查询系统 被引量:11
1
作者 顾荣 仇红剑 +3 位作者 杨文家 胡伟 袁春风 黄宜华 《计算机学报》 EI CSCD 北大核心 2017年第10期2212-2230,共19页
随着互联网应用的迅猛发展和语义网技术研究的深入,语义数据呈现出爆炸性增长趋势.一方面,对于语义数据实现高效存储和查询是语义网应用的重要基础,越来越多的语义应用可以依赖于此以提供更好的服务;另一方面,语义数据的爆炸性增长,对... 随着互联网应用的迅猛发展和语义网技术研究的深入,语义数据呈现出爆炸性增长趋势.一方面,对于语义数据实现高效存储和查询是语义网应用的重要基础,越来越多的语义应用可以依赖于此以提供更好的服务;另一方面,语义数据的爆炸性增长,对大数据环境下的语义数据的存储与查询技术提出了新的挑战.传统的基于关系型数据库的语义数据与查询系统已难以满足大规模语义数据的存储与查询需求.该文针对大规模RDF数据的存储与查询问题,以OpenRDF Sesame框架为基础,采用分布式分层式存储架构,提出并实现了属性表存储结构来进行语义数据的存储.在此基础上,针对布尔矩阵分解算法在对大规模语义数据构造属性表较慢的问题,基于Spark分布式计算框架提出并实现了并行化频繁项集挖掘算法求解大规模矩阵分解,以加速属性表的构造过程.并且,在查询层增加了基于哈希转换等查询优化.最后,基于该文所提出的索引结构和优化方法设计实现了原型系统Goldfish,并在大规模合成和真实数据集上进行了实验对比.结果表明,Goldfish原型系统比Rainbow系统查询性能平均提升约6倍,比Jena-HBase查询性能平均提升约500倍,比基于MapReduce的RDF查询系统SHARD性能平均提升约1200倍. 展开更多
关键词 大规模RDF存储 矩阵分解 分层式存储 大数据 语义网 SPARK
下载PDF
ONFS: a hierarchical hybrid file system based on memory, SSD, and HDD for high performance computers 被引量:1
2
作者 Xin LIU Yu-tong LU +3 位作者 Jie YU Peng-fei WANG Jie-ting WU Ying LU 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第12期1940-1971,共32页
With supercomputers developing towards exascale, the number of compute cores increases dramatically, making more complex and larger-scale applications possible. The input/output (I/O) requirements of large-scale app... With supercomputers developing towards exascale, the number of compute cores increases dramatically, making more complex and larger-scale applications possible. The input/output (I/O) requirements of large-scale applications, workflow applications, and their checkpointing include substantial bandwidth and an extremely low latency, posing a serious challenge to high performance computing (HPC) storage systems. Current hard disk drive (HDD) based underlying storage systems are becoming more and more incompetent to meet the requirements of next-generation exascale supercomputers. To rise to the challenge, we propose a hierarchical hybrid storage system, on-line and near-line file system (ONFS). It leverages dynamic random access memory (DRAM) and solid state drive (SSD) in compute nodes, and HDD in storage servers to build a three-level storage system in a unified namespace. It supports portable operating system interface (POSIX) semantics, and provides high bandwidth, low latency, and huge storage capacity. In this paper, we present the technical details on distributed metadata management, the strategy of memory borrow and return, data consistency, parallel access control, and mechanisms guiding downward and upward migration in ONFS. We implement an ONFS prototype on the TH-1A supercomputer, and conduct experiments to test its I/O performance and scalability. The results show that the bandwidths of single-thread and multi-thread 'read'/'write' are 6-fold and 5-fold better than HDD-based Lustre, respectively. The I/O bandwidth of data-intensive applications in ONFS can be 6.35 timcs that in Lustre. 展开更多
关键词 High performance computing Hierarchical hybrid storage system Distributed metadata management Data migration
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部