Under the frame of the (2+1)-dimensional zero curvature equation and Tu model, the (2+1)-dimensional dispersive long wave hierarchy is obtained. Furthermore, the loop algebra is expanded into a larger one. Moreover, a...Under the frame of the (2+1)-dimensional zero curvature equation and Tu model, the (2+1)-dimensional dispersive long wave hierarchy is obtained. Furthermore, the loop algebra is expanded into a larger one. Moreover, a class of integrable coupling system for dispersive long wave hierarchy and (2+1)-dimensional multi-component integrable system will be investigated.展开更多
An analysis of the solute dispersion in the liquid flowing through a pipe by means of Aris–Barton's ‘method of moments', under the joint effect of some finite yield stress and irreversible absorption into th...An analysis of the solute dispersion in the liquid flowing through a pipe by means of Aris–Barton's ‘method of moments', under the joint effect of some finite yield stress and irreversible absorption into the wall is presented in this paper. The liquid is considered as a three-layer liquid where the center region is Casson liquid surrounded by Newtonian liquid layer. A significant change from previous modelling exercises in the study of hydrodynamic dispersion, different molecular diffusivity has been considered for the different region yet to be constant. For all time period, finite difference implicit scheme has been adopted to solve the integral moment equation arising from the unsteady convective diffusion equation. The purpose of the study is to find the dependency of solute transport coefficients on absorption parameter, yield stress, viscosity ratio, peripheral layer variation and in addition with various diffusivity coefficients in different liquid layers. This kind of study may be useful for understanding the dispersion process in the blood flow analysis.展开更多
The purpose of this study is to point out the dominant factor of heat and mass distribution in single-cell PEFC (polymer electrolyte fuel cell). The numerical simulation by simple 3D model to clarify the influence o...The purpose of this study is to point out the dominant factor of heat and mass distribution in single-cell PEFC (polymer electrolyte fuel cell). The numerical simulation by simple 3D model to clarify the influence of cell components structure on heat and mass transfer phenomena as well as power generation experiment and measurement of in-plane temperature distribution by thermograph was carried out. From the simulation, the gas channel pitch of separator was the key factor to unify in-plane distribution of temperature and gas concentration on reaction surface in cell. The compression of GDL (gas diffusion layer) by cell binding caused wider distribution of mass concentration in GDL. From the experiment, the power generation performance was promoted with decreasing gas channel pitch. The temperature range in observation area was reduced with decreasing gas channel pitch. It can be concluded that the power generation performance is promoted by decreasing gas channel pitch.展开更多
The distribution of heavy metals in earthworms has been widely studied, highlighting the importance of the fate of these metals.However, little information is available on the distribution of hydrophobic organic conta...The distribution of heavy metals in earthworms has been widely studied, highlighting the importance of the fate of these metals.However, little information is available on the distribution of hydrophobic organic contaminants(HOCs) within earthworms. The aim of this study was to propose a hierarchic method to study the distribution of phenanthrene(PHE), a typical HOC, in Eisenia fetida at several levels: sub-organism(pre-clitellum, clitellum and post-clitellum), tissue(body wall, gut and body fluid) and subcellular(intracellular and extracellular fractions). Earthworms were incubated in the soils amended with low(LC, 10 mg kg-1) and high concentrations(HC, 50 mg kg-1) of PHE and sampled at different time intervals. At the sub-organism level, the distribution of PHE was homogeneous among the sub-organism fractions in the LC treatment but heterogeneous in the HC treatment and gradually reached the following form of post-clitellum ≈ clitellum > pre-clitellum. The uptake and elimination kinetics of PHE in the sub-organism were well described by a one-compartment model. At the tissue level, the concentration of PHE followed the order of gut > body fluid >body wall; while at the subcellular level, the concentration of PHE in the extracellular fraction was 1.23 to 4.68 times higher than that in the intracellular fraction. Therefore, the simple circulatory system of earthworms may account for the PHE distribution at the sub-organism level. Partition pathways(passive diffusion) of PHE between the body wall, body fluid and gut as well as the processes of PHE entrance into the inner cellular compartment via passive diffusion were experimentally supported.展开更多
文摘Under the frame of the (2+1)-dimensional zero curvature equation and Tu model, the (2+1)-dimensional dispersive long wave hierarchy is obtained. Furthermore, the loop algebra is expanded into a larger one. Moreover, a class of integrable coupling system for dispersive long wave hierarchy and (2+1)-dimensional multi-component integrable system will be investigated.
文摘An analysis of the solute dispersion in the liquid flowing through a pipe by means of Aris–Barton's ‘method of moments', under the joint effect of some finite yield stress and irreversible absorption into the wall is presented in this paper. The liquid is considered as a three-layer liquid where the center region is Casson liquid surrounded by Newtonian liquid layer. A significant change from previous modelling exercises in the study of hydrodynamic dispersion, different molecular diffusivity has been considered for the different region yet to be constant. For all time period, finite difference implicit scheme has been adopted to solve the integral moment equation arising from the unsteady convective diffusion equation. The purpose of the study is to find the dependency of solute transport coefficients on absorption parameter, yield stress, viscosity ratio, peripheral layer variation and in addition with various diffusivity coefficients in different liquid layers. This kind of study may be useful for understanding the dispersion process in the blood flow analysis.
文摘The purpose of this study is to point out the dominant factor of heat and mass distribution in single-cell PEFC (polymer electrolyte fuel cell). The numerical simulation by simple 3D model to clarify the influence of cell components structure on heat and mass transfer phenomena as well as power generation experiment and measurement of in-plane temperature distribution by thermograph was carried out. From the simulation, the gas channel pitch of separator was the key factor to unify in-plane distribution of temperature and gas concentration on reaction surface in cell. The compression of GDL (gas diffusion layer) by cell binding caused wider distribution of mass concentration in GDL. From the experiment, the power generation performance was promoted with decreasing gas channel pitch. The temperature range in observation area was reduced with decreasing gas channel pitch. It can be concluded that the power generation performance is promoted by decreasing gas channel pitch.
基金Supported by the National Natural Science Foundation of China(No.41101292)
文摘The distribution of heavy metals in earthworms has been widely studied, highlighting the importance of the fate of these metals.However, little information is available on the distribution of hydrophobic organic contaminants(HOCs) within earthworms. The aim of this study was to propose a hierarchic method to study the distribution of phenanthrene(PHE), a typical HOC, in Eisenia fetida at several levels: sub-organism(pre-clitellum, clitellum and post-clitellum), tissue(body wall, gut and body fluid) and subcellular(intracellular and extracellular fractions). Earthworms were incubated in the soils amended with low(LC, 10 mg kg-1) and high concentrations(HC, 50 mg kg-1) of PHE and sampled at different time intervals. At the sub-organism level, the distribution of PHE was homogeneous among the sub-organism fractions in the LC treatment but heterogeneous in the HC treatment and gradually reached the following form of post-clitellum ≈ clitellum > pre-clitellum. The uptake and elimination kinetics of PHE in the sub-organism were well described by a one-compartment model. At the tissue level, the concentration of PHE followed the order of gut > body fluid >body wall; while at the subcellular level, the concentration of PHE in the extracellular fraction was 1.23 to 4.68 times higher than that in the intracellular fraction. Therefore, the simple circulatory system of earthworms may account for the PHE distribution at the sub-organism level. Partition pathways(passive diffusion) of PHE between the body wall, body fluid and gut as well as the processes of PHE entrance into the inner cellular compartment via passive diffusion were experimentally supported.