We performed angle-resolved photoemission spectroscopy studies on a series of FeTe_(1-x)Se_x monolayer films grown on Sr TiO_3.The superconductivity of the films is robust and rather insensitive to the variations of t...We performed angle-resolved photoemission spectroscopy studies on a series of FeTe_(1-x)Se_x monolayer films grown on Sr TiO_3.The superconductivity of the films is robust and rather insensitive to the variations of the band position and effective mass caused by the substitution of Se by Te.However,the band gap between the electron-and hole-like bands at the Brillouin zone center decreases towards band inversion and parity exchange,which drive the system to a nontrivial topological state predicted by theoretical calculations.Our results provide a clear experimental indication that the FeTe_(1-x)Se_x monolayer materials are high-temperature connate topological superconductors in which band topology and superconductivity are integrated intrinsically.展开更多
基金supported by grants from the Ministry of Science and Technology of China(2015CB921000,2016YFA0401000,2015CB921301,2016YFA0300300)the National Natural Science Foundation of China(11574371,11274362,1190020,11334012,11274381,11674371)
文摘We performed angle-resolved photoemission spectroscopy studies on a series of FeTe_(1-x)Se_x monolayer films grown on Sr TiO_3.The superconductivity of the films is robust and rather insensitive to the variations of the band position and effective mass caused by the substitution of Se by Te.However,the band gap between the electron-and hole-like bands at the Brillouin zone center decreases towards band inversion and parity exchange,which drive the system to a nontrivial topological state predicted by theoretical calculations.Our results provide a clear experimental indication that the FeTe_(1-x)Se_x monolayer materials are high-temperature connate topological superconductors in which band topology and superconductivity are integrated intrinsically.