Knowledge about the influence of soil layers on evaporation is essential for the optimization of infield rainwater harvesting (IRWH) in the semi-arid areas of the Free State province of South Africa. Among the soils...Knowledge about the influence of soil layers on evaporation is essential for the optimization of infield rainwater harvesting (IRWH) in the semi-arid areas of the Free State province of South Africa. Among the soils earmarked for 1RWH development include the Tukulu, Sepane and Swartland soil types that have contrasting soil layers. These soils have to capture and store rainwater within the soil profile layers away from the evaporation zone. To determine how the three soils release and deliver soil water at the evaporating site, a 21-day evaporation experiment was conducted on pre-drained monoliths. Instantaneous soil water content (SWC) from in-situ and soil water characteristic curve (SWCC) from laboratory was measured. Separate soil samples of 15 mm thickness were also evaporated under the same conditions to establish the extent of drying and hydraulic gradient at the soil surface. The Darcian evaporative flux and unsaturated hydraulic conductivity (K-coefficient) were also determined. At the surface suctions of magnitude greater than 1,500 kPa were observed from all monoliths. Total contributions to evaporation from the Tukulu, Sepane and Swartland were 43, 51 and 70 mm, respectively. The low contributions were explained by the presence of the prismacutanic C-horizon in the Tukulu and Sepane at respective depths of 600 and 700 mm. This layer was associated with the steepest suction gradient that restrained further upward fluxes by subsequent lowering for the K-coefficient with more than two orders of magnitudes within a narrow range of SWC. However, the presence of the pedocutanic B-horizon at depths of 300 mm undermined this restrictive function through the appreciable capillary activity demonstrated by clays at near evaporating surfaces. The shallowness and deficiency in structure of the Swartland was consistent with the high contribution to evaporation that gave this soil a dry soil water regime. It was therefore concluded that the Tukulu offered soil profile layers that could reasonably satisfy the soil water conservation requirements for IRWH.展开更多
In this paper, several structures for multilayer Cu(In1-xGax) Se2 (CIGS) thin film solar cells are proposed to achieve high conversion efficiency. All of the modeling and simulations were based on the actual data of e...In this paper, several structures for multilayer Cu(In1-xGax) Se2 (CIGS) thin film solar cells are proposed to achieve high conversion efficiency. All of the modeling and simulations were based on the actual data of experimentally produced CIGS cells reported in the literature. In standard CIGS cells with a single absorber layer, the effects of acceptor density and Ga content on device performance were studied, and then optimized for maximum conversion efficiency. The same procedure was performed for cells with two and three sectioned CIGS absorber layers in which Cu and/or Ga contents were varied within each consecutive section. This produces an internal additional electric field within the absorber layer, which resulted in an increase in carrier collection for longer wavelength photons, and hence, improvement in the conversion efficiency of the cell. An increase of approximately 3% in efficiency is predicted for cells with two layer absorbers. For multilayer cells in which Cu and Ga distribution were stepped simultaneously, the improvement could be approximately 3.5%. This improvement is due to; enhanced carrier collection for longer-wavelength photons, and reduced recombination at the heterojunction and back regions of the cell. These results are confirmed by the physics of the cells.展开更多
The notion of a fuzzy retract was introduced by Rodabaugh (1981). The notion of a fuzzy pairwise retract was introduced in 2001. Some weak forms and some strong forms of α-continuous mappings were introduced in 1988 ...The notion of a fuzzy retract was introduced by Rodabaugh (1981). The notion of a fuzzy pairwise retract was introduced in 2001. Some weak forms and some strong forms of α-continuous mappings were introduced in 1988 and 1997. The authors extend some of these forms to the L-fuzzy bitopological setting and construct various α-fuzzy pairwise retracts. The concept of weakly induced spaces in the case L = [0,1] was introduced by Martin (1980). Liu and Luo (1987) generalized this notion to the case that L is an arbitrary F-lattice and introduced the notion of induced L-fts. Several results are obtained, especially, for L-valued pairwise stratification spaces.展开更多
In this review, we describe the principles of the tunnel junction, self-assembled monolayer (SAM) application techniques, experimental testbed fabrication, and characterization of the films and devices. In addition,...In this review, we describe the principles of the tunnel junction, self-assembled monolayer (SAM) application techniques, experimental testbed fabrication, and characterization of the films and devices. In addition, techniques for directed application, removal, and functionalization of the monolayers are discussed. Bottom-up fabrication techniques have seen increased attention because of their versatility and ease of use. These films see mechanical uses as surface modifiers and micro-scale lubricants. Advances in nanowatt electronics and ultra-low power sensors have opened up an energy harvesting niche for solutions which would have proven ineffective just some years ago. The focus of this study is the two- terminal junction which has potential applications in THz rectification for energy harvesting, medical imaging, and defense sensing. The quantum theory of operation behind these devices is touched on briefly---describing tunneling through the organic monolayers. Commentary on trends in research and potential future work are presented as well.展开更多
文摘Knowledge about the influence of soil layers on evaporation is essential for the optimization of infield rainwater harvesting (IRWH) in the semi-arid areas of the Free State province of South Africa. Among the soils earmarked for 1RWH development include the Tukulu, Sepane and Swartland soil types that have contrasting soil layers. These soils have to capture and store rainwater within the soil profile layers away from the evaporation zone. To determine how the three soils release and deliver soil water at the evaporating site, a 21-day evaporation experiment was conducted on pre-drained monoliths. Instantaneous soil water content (SWC) from in-situ and soil water characteristic curve (SWCC) from laboratory was measured. Separate soil samples of 15 mm thickness were also evaporated under the same conditions to establish the extent of drying and hydraulic gradient at the soil surface. The Darcian evaporative flux and unsaturated hydraulic conductivity (K-coefficient) were also determined. At the surface suctions of magnitude greater than 1,500 kPa were observed from all monoliths. Total contributions to evaporation from the Tukulu, Sepane and Swartland were 43, 51 and 70 mm, respectively. The low contributions were explained by the presence of the prismacutanic C-horizon in the Tukulu and Sepane at respective depths of 600 and 700 mm. This layer was associated with the steepest suction gradient that restrained further upward fluxes by subsequent lowering for the K-coefficient with more than two orders of magnitudes within a narrow range of SWC. However, the presence of the pedocutanic B-horizon at depths of 300 mm undermined this restrictive function through the appreciable capillary activity demonstrated by clays at near evaporating surfaces. The shallowness and deficiency in structure of the Swartland was consistent with the high contribution to evaporation that gave this soil a dry soil water regime. It was therefore concluded that the Tukulu offered soil profile layers that could reasonably satisfy the soil water conservation requirements for IRWH.
文摘In this paper, several structures for multilayer Cu(In1-xGax) Se2 (CIGS) thin film solar cells are proposed to achieve high conversion efficiency. All of the modeling and simulations were based on the actual data of experimentally produced CIGS cells reported in the literature. In standard CIGS cells with a single absorber layer, the effects of acceptor density and Ga content on device performance were studied, and then optimized for maximum conversion efficiency. The same procedure was performed for cells with two and three sectioned CIGS absorber layers in which Cu and/or Ga contents were varied within each consecutive section. This produces an internal additional electric field within the absorber layer, which resulted in an increase in carrier collection for longer wavelength photons, and hence, improvement in the conversion efficiency of the cell. An increase of approximately 3% in efficiency is predicted for cells with two layer absorbers. For multilayer cells in which Cu and Ga distribution were stepped simultaneously, the improvement could be approximately 3.5%. This improvement is due to; enhanced carrier collection for longer-wavelength photons, and reduced recombination at the heterojunction and back regions of the cell. These results are confirmed by the physics of the cells.
文摘The notion of a fuzzy retract was introduced by Rodabaugh (1981). The notion of a fuzzy pairwise retract was introduced in 2001. Some weak forms and some strong forms of α-continuous mappings were introduced in 1988 and 1997. The authors extend some of these forms to the L-fuzzy bitopological setting and construct various α-fuzzy pairwise retracts. The concept of weakly induced spaces in the case L = [0,1] was introduced by Martin (1980). Liu and Luo (1987) generalized this notion to the case that L is an arbitrary F-lattice and introduced the notion of induced L-fts. Several results are obtained, especially, for L-valued pairwise stratification spaces.
文摘In this review, we describe the principles of the tunnel junction, self-assembled monolayer (SAM) application techniques, experimental testbed fabrication, and characterization of the films and devices. In addition, techniques for directed application, removal, and functionalization of the monolayers are discussed. Bottom-up fabrication techniques have seen increased attention because of their versatility and ease of use. These films see mechanical uses as surface modifiers and micro-scale lubricants. Advances in nanowatt electronics and ultra-low power sensors have opened up an energy harvesting niche for solutions which would have proven ineffective just some years ago. The focus of this study is the two- terminal junction which has potential applications in THz rectification for energy harvesting, medical imaging, and defense sensing. The quantum theory of operation behind these devices is touched on briefly---describing tunneling through the organic monolayers. Commentary on trends in research and potential future work are presented as well.