The solution of vibration transfer from the subsoil to the structure is demonstrated using the example of a multi-storey reinforced concrete building, founded on a dual foundation plate. An anti-vibration layer of rub...The solution of vibration transfer from the subsoil to the structure is demonstrated using the example of a multi-storey reinforced concrete building, founded on a dual foundation plate. An anti-vibration layer of rubber has been designed between the two plates. Two 3D numerical models of the building take into account the individual storeys, firstly together with the lay-out of the rubber distribution in the foundation pan and secondly without this rubber part. For response analysis, the measured time histories in the construction area were selected and then the typical response was used as an input for a dynamic analysis of the structure.展开更多
The paper is to introduce a computational methodology that is based on ordinary differential equations (ODE) solver for the structural systems adopted by a super tall building in its preliminary design stage so as t...The paper is to introduce a computational methodology that is based on ordinary differential equations (ODE) solver for the structural systems adopted by a super tall building in its preliminary design stage so as to facilitate the designers to adjust the dynamic properties of the adopted structural system. The construction of the study is composed by following aspects. The first aspect is the modelling of a structural system. As a typical example, a mega frame-core-tube structural system adopted by some famous super tall buildings such as Taipei 101 building, Shanghai World financial center, is employed to demonstrate the modelling of a computational model. The second aspect is the establishment of motion equations constituted by a group of ordinary differential equations for the analyses of free vibration and resonant response. The solutions of the motion equations (that constitutes the third aspect) resorted to ODE-solver technique. Finally, some valuable conclusions are summarized.展开更多
Hierarchical structures, in which structure is generated and controlled simultaneously at different size scales, have attracted increasing attention due to their potentials in both theoretical research and practical a...Hierarchical structures, in which structure is generated and controlled simultaneously at different size scales, have attracted increasing attention due to their potentials in both theoretical research and practical applications. In this review, a "non-classical crystallization" mechanism is discussed for their possibilities in morphology control of hierarchically-structured materials. Differently, this crystallization route is not based on the attaching and detaching of monomers as happened in the classical case, but through the self-organization of preformed building blocks as nanosized subunits, whose oriented attachment leads to mesocrystals with favorable morphology and texture. Representative materials including both inorganic and organic crystals are reported with possible mechanisms proposed. Synthetic protocols based on this mechanism provide unique inspirations for materials design and could be applied to morphological and structural control of new materials with optimized functions.展开更多
文摘The solution of vibration transfer from the subsoil to the structure is demonstrated using the example of a multi-storey reinforced concrete building, founded on a dual foundation plate. An anti-vibration layer of rubber has been designed between the two plates. Two 3D numerical models of the building take into account the individual storeys, firstly together with the lay-out of the rubber distribution in the foundation pan and secondly without this rubber part. For response analysis, the measured time histories in the construction area were selected and then the typical response was used as an input for a dynamic analysis of the structure.
基金Acknowledgment The research work was financially supported both by the Natural Science Foundation of China (51178164) and the Priority Discipline Foundation of Henan Province (507909).
文摘The paper is to introduce a computational methodology that is based on ordinary differential equations (ODE) solver for the structural systems adopted by a super tall building in its preliminary design stage so as to facilitate the designers to adjust the dynamic properties of the adopted structural system. The construction of the study is composed by following aspects. The first aspect is the modelling of a structural system. As a typical example, a mega frame-core-tube structural system adopted by some famous super tall buildings such as Taipei 101 building, Shanghai World financial center, is employed to demonstrate the modelling of a computational model. The second aspect is the establishment of motion equations constituted by a group of ordinary differential equations for the analyses of free vibration and resonant response. The solutions of the motion equations (that constitutes the third aspect) resorted to ODE-solver technique. Finally, some valuable conclusions are summarized.
文摘Hierarchical structures, in which structure is generated and controlled simultaneously at different size scales, have attracted increasing attention due to their potentials in both theoretical research and practical applications. In this review, a "non-classical crystallization" mechanism is discussed for their possibilities in morphology control of hierarchically-structured materials. Differently, this crystallization route is not based on the attaching and detaching of monomers as happened in the classical case, but through the self-organization of preformed building blocks as nanosized subunits, whose oriented attachment leads to mesocrystals with favorable morphology and texture. Representative materials including both inorganic and organic crystals are reported with possible mechanisms proposed. Synthetic protocols based on this mechanism provide unique inspirations for materials design and could be applied to morphological and structural control of new materials with optimized functions.