期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
面向RGB-D场景解析的三维空间结构化编码深度网络 被引量:1
1
作者 王泽宇 吴艳霞 +1 位作者 张国印 布树辉 《计算机应用》 CSCD 北大核心 2017年第12期3458-3466,共9页
有效的RGB-D图像特征提取和准确的3D空间结构化学习是提升RGB-D场景解析结果的关键。目前,全卷积神经网络(FCNN)具有强大的特征提取能力,但是,该网络无法充分地学习3D空间结构化信息。为此,提出了一种新颖的三维空间结构化编码深度网络... 有效的RGB-D图像特征提取和准确的3D空间结构化学习是提升RGB-D场景解析结果的关键。目前,全卷积神经网络(FCNN)具有强大的特征提取能力,但是,该网络无法充分地学习3D空间结构化信息。为此,提出了一种新颖的三维空间结构化编码深度网络,内嵌的结构化学习层有机地结合了图模型网络和空间结构化编码算法。该算法能够比较准确地学习和描述物体所处3D空间的物体分布。通过该深度网络,不仅能够提取包含多层形状和深度信息的分层视觉特征(HVF)和分层深度特征(HDF),而且可以生成包含3D结构化信息的空间关系特征,进而得到融合上述3类特征的混合特征,从而能够更准确地表达RGB-D图像的语义信息。实验结果表明,在NYUDv2和SUNRGBD标准RGB-D数据集上,该深度网络较现有先进的场景解析方法能够显著提升RGB-D场景解析的结果。 展开更多
关键词 全卷积神经网络 图模型 空间结构化编码算法 分层视觉特征 分层深度特征 空间关系特征 混合特征
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部