The buckling behavior of a typical structure consisting of a micro constantan wire and a polymer membrane under coupled electrical-mechanical loading was studied. The phenomenon that the constantan wire delaminates fr...The buckling behavior of a typical structure consisting of a micro constantan wire and a polymer membrane under coupled electrical-mechanical loading was studied. The phenomenon that the constantan wire delaminates from the polymer membrane was observed after unloading. The interfacial toughness of the constantan wire and the polymer membrane was estimated. Moreover, several new instability modes of the constantan wire could be further triggered based on the buckle-driven delamination. After electrical loading and tensile loading, the constantan wire was likely to fracture based on buckling. After electrical loading and compressive loading, the constantan wire was easily folded at the top of the buckling region. On the occasion, the constantan wire buckled towards the inside of the polymer membrane under electrical-compressive loading. The mechanisms of these instability modes were analyzed.展开更多
A simplified approach is presented for the analysis of the settlement of vertically loaded pile groups. In order to simulate the nonlinear pile-to-pile interaction in pile groups, the soils along the piles are assumed...A simplified approach is presented for the analysis of the settlement of vertically loaded pile groups. In order to simulate the nonlinear pile-to-pile interaction in pile groups, the soils along the piles are assumed to behave as a series of nonlinear springs subjected to the shaft shear stress at the pile/soil interface. Considering the displacement reduction induced by the pile-to-pile interaction, the shear-deformation method is adopted to approximate the displacement field of the layered soils around the piles, and the equivalent stiffness of the springs is obtained. Furthermore, the load-settlement response of pile groups is deduced by modifying the load-transfer functions to account for the pile-to-pile interaction. The settlements of a laboratory pile groups computed by the presented approach are in a good agreement with measured results. The analysis on Contrastive parameters shows that the settlements of pile group decrease with the increase of the pile space and pile length, and the part of piles exceeding the critical pile length has little contribution to the beating capacity of the pile groups.展开更多
By spraying concrete on inner surface,air-supported fabric structures can be used as formwork to construct reinforced concrete shell structures.The fabric formwork has the finished form of concrete structure.Large dev...By spraying concrete on inner surface,air-supported fabric structures can be used as formwork to construct reinforced concrete shell structures.The fabric formwork has the finished form of concrete structure.Large deviation from the desired shape of concrete shells still remains as central problem due to dead weight of concrete and less stiffness of fabric formwork.Polyurethane can be used not only as a bonding layer between fabrics and concrete but also as an additional stiffening layer.However,there is little research on mechanical behaviors of the polyurethane shell structure.This paper presents experimental studies on an inflated fabric model with and without polyurethane,including relief pressure tests,vertical loading tests and horizontal loading tests.Experimental results show that the additional polyurethane layer can significantly enhance the stiffness of the fabric formwork.Compared with the experiment,a numerical model using shell layered finite elements has a good prediction.The reinforcement by polyurethane to improve stiffness of air-supported fabric formwork is expected to be considered in the design and construction of the concrete shell,especially dealing with the advance of shape-control.展开更多
Carrying on a series of compression and shear tests by a large number of specimens, reliabilities of T300/QY8911 laminated composite were studied when dispersibility models were described. The results show that the st...Carrying on a series of compression and shear tests by a large number of specimens, reliabilities of T300/QY8911 laminated composite were studied when dispersibility models were described. The results show that the stress is linearly dependent on the strain and the damage modes of specimens are brittle fracture for both kinds of tests. Dispersibility models of compression and shear strength are expressed as Re-N(415.39, 6 586.36) and Rs-ln(5.071 8, 0.155 3), respectively. When normal and lognormal distributions were used to describe the dispersibility models of compression and shear strength, and the compression or shear load follows the normal distribution, the almost same failure probability can be obtained from different reliability analysis methods.展开更多
Reinforced concrete(RC) load bearing wall is widely used in high-rise and mid-rise buildings. Due to the number of walls in plan and reduction in lateral force portion, this system is not only stronger against earthqu...Reinforced concrete(RC) load bearing wall is widely used in high-rise and mid-rise buildings. Due to the number of walls in plan and reduction in lateral force portion, this system is not only stronger against earthquakes, but also more economical. The effect of progressive collapse caused by removal of load bearing elements, in various positions in plan and stories of the RC load bearing wall system was evaluated by nonlinear dynamic and static analyses. For this purpose, three-dimensional model of 10-story structure was selected. The analysis results indicated stability, strength and stiffness of the RC load-bearing wall system against progressive collapse. It was observed that the most critical condition for removal of load bearing walls was the instantaneous removal of the surrounding walls located at the corners of the building where the sections of the load bearing elements were changed. In this case, the maximum vertical displacement was limited to 6.3 mm and the structure failed after applying the load of 10 times the axial load bored by removed elements. Comparison between the results of the nonlinear dynamic and static analyses demonstrated that the "load factor" parameter was a reasonable criterion to evaluate the progressive collapse potential of the structure.展开更多
基金Projects(2010CB631005,2011CB606105)support by the National Basic Research Program of ChinaProjects(11232008,91216301,11227801,11172151)supported by the National Natural Science Foundation of ChinaProject supported by Tsinghua University Initiative Scientific Research Program
文摘The buckling behavior of a typical structure consisting of a micro constantan wire and a polymer membrane under coupled electrical-mechanical loading was studied. The phenomenon that the constantan wire delaminates from the polymer membrane was observed after unloading. The interfacial toughness of the constantan wire and the polymer membrane was estimated. Moreover, several new instability modes of the constantan wire could be further triggered based on the buckle-driven delamination. After electrical loading and tensile loading, the constantan wire was likely to fracture based on buckling. After electrical loading and compressive loading, the constantan wire was easily folded at the top of the buckling region. On the occasion, the constantan wire buckled towards the inside of the polymer membrane under electrical-compressive loading. The mechanisms of these instability modes were analyzed.
基金Project(50708033) supported by the National Natural Science Foundation of ChinaProjects(200923, CXKJSF0108-2) supported by Transportation Technical Project of Hunan Province, China
文摘A simplified approach is presented for the analysis of the settlement of vertically loaded pile groups. In order to simulate the nonlinear pile-to-pile interaction in pile groups, the soils along the piles are assumed to behave as a series of nonlinear springs subjected to the shaft shear stress at the pile/soil interface. Considering the displacement reduction induced by the pile-to-pile interaction, the shear-deformation method is adopted to approximate the displacement field of the layered soils around the piles, and the equivalent stiffness of the springs is obtained. Furthermore, the load-settlement response of pile groups is deduced by modifying the load-transfer functions to account for the pile-to-pile interaction. The settlements of a laboratory pile groups computed by the presented approach are in a good agreement with measured results. The analysis on Contrastive parameters shows that the settlements of pile group decrease with the increase of the pile space and pile length, and the part of piles exceeding the critical pile length has little contribution to the beating capacity of the pile groups.
基金Projects(51178263,51378307)supported by the National Natural Science Foundation of China
文摘By spraying concrete on inner surface,air-supported fabric structures can be used as formwork to construct reinforced concrete shell structures.The fabric formwork has the finished form of concrete structure.Large deviation from the desired shape of concrete shells still remains as central problem due to dead weight of concrete and less stiffness of fabric formwork.Polyurethane can be used not only as a bonding layer between fabrics and concrete but also as an additional stiffening layer.However,there is little research on mechanical behaviors of the polyurethane shell structure.This paper presents experimental studies on an inflated fabric model with and without polyurethane,including relief pressure tests,vertical loading tests and horizontal loading tests.Experimental results show that the additional polyurethane layer can significantly enhance the stiffness of the fabric formwork.Compared with the experiment,a numerical model using shell layered finite elements has a good prediction.The reinforcement by polyurethane to improve stiffness of air-supported fabric formwork is expected to be considered in the design and construction of the concrete shell,especially dealing with the advance of shape-control.
基金Project(51175424) supported by the National Natural Science FoundationProject(B07050) supported by the 111 Project,ChinaProject (JC20110257) supported by the Basic Research Foundation of Northwestern Polytechnical University
文摘Carrying on a series of compression and shear tests by a large number of specimens, reliabilities of T300/QY8911 laminated composite were studied when dispersibility models were described. The results show that the stress is linearly dependent on the strain and the damage modes of specimens are brittle fracture for both kinds of tests. Dispersibility models of compression and shear strength are expressed as Re-N(415.39, 6 586.36) and Rs-ln(5.071 8, 0.155 3), respectively. When normal and lognormal distributions were used to describe the dispersibility models of compression and shear strength, and the compression or shear load follows the normal distribution, the almost same failure probability can be obtained from different reliability analysis methods.
文摘Reinforced concrete(RC) load bearing wall is widely used in high-rise and mid-rise buildings. Due to the number of walls in plan and reduction in lateral force portion, this system is not only stronger against earthquakes, but also more economical. The effect of progressive collapse caused by removal of load bearing elements, in various positions in plan and stories of the RC load bearing wall system was evaluated by nonlinear dynamic and static analyses. For this purpose, three-dimensional model of 10-story structure was selected. The analysis results indicated stability, strength and stiffness of the RC load-bearing wall system against progressive collapse. It was observed that the most critical condition for removal of load bearing walls was the instantaneous removal of the surrounding walls located at the corners of the building where the sections of the load bearing elements were changed. In this case, the maximum vertical displacement was limited to 6.3 mm and the structure failed after applying the load of 10 times the axial load bored by removed elements. Comparison between the results of the nonlinear dynamic and static analyses demonstrated that the "load factor" parameter was a reasonable criterion to evaluate the progressive collapse potential of the structure.