The variation of the flux of energetic electrons in the magnetosphere has been proven to be strongly related to the solar wind speed. Observations of GEO orbit show that the flux of low-energy electrons is not only mo...The variation of the flux of energetic electrons in the magnetosphere has been proven to be strongly related to the solar wind speed. Observations of GEO orbit show that the flux of low-energy electrons is not only modulated by the solar wind speed, but, if a time delay is added, is also positively correlated to the flux of high-energy electrons. This feature provides a possible method to forecast the flux of high-energy electrons in GEO orbit. In this study, the correlations of the fluxes between the high-energy electrons and low-middle-energy electrons obtained at different L values and in different orbits are investigated to develop the application of this feature. Based on the analysis of long–term data observed by NOAA POES and GOES, the correlations between the fluxes of high-energy electrons and low–middle–energy electrons are good enough at different L values and in different orbits in quiet time, but this correlation is strongly affected by CME–driven geomagnetic storms.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.41374167,41074117&41374166)
文摘The variation of the flux of energetic electrons in the magnetosphere has been proven to be strongly related to the solar wind speed. Observations of GEO orbit show that the flux of low-energy electrons is not only modulated by the solar wind speed, but, if a time delay is added, is also positively correlated to the flux of high-energy electrons. This feature provides a possible method to forecast the flux of high-energy electrons in GEO orbit. In this study, the correlations of the fluxes between the high-energy electrons and low-middle-energy electrons obtained at different L values and in different orbits are investigated to develop the application of this feature. Based on the analysis of long–term data observed by NOAA POES and GOES, the correlations between the fluxes of high-energy electrons and low–middle–energy electrons are good enough at different L values and in different orbits in quiet time, but this correlation is strongly affected by CME–driven geomagnetic storms.