期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于K-CNN和N-GRU的风电机组发电机状态预测 被引量:1
1
作者 柴同 袁逸萍 +1 位作者 马军岩 樊盼盼 《机械强度》 CAS CSCD 北大核心 2023年第5期1043-1049,共7页
为了检测风电机组发电机异常、减少由故障引起的停机事件发生,基于真实风电场的数据采集与监视控制(Supervisory Control and Data Acquisition,SCADA)系统记录的多维传感器参数,提出一种K-CNN(Convolutional Neural Network,卷积神经网... 为了检测风电机组发电机异常、减少由故障引起的停机事件发生,基于真实风电场的数据采集与监视控制(Supervisory Control and Data Acquisition,SCADA)系统记录的多维传感器参数,提出一种K-CNN(Convolutional Neural Network,卷积神经网络)和N-GRU(Gated Recurrent Unit,门控循环单元)相结合的深度学习框架,建立风电机组发电机状态预测模型。首先,用Pearson相关系数分析状态参数相关性;之后,通过权重系数加权得到一维融合参数;其次,针对传统特征提取过程中忽略浅层特征的问题,采用CNN分层提取一维融合参数的特征,并利用核主成分分析(Kernel Principal Component Analysis,KPCA)将不同层的特征提取结果降为一维;然后,针对传统GRU算法参数欠优化问题,利用神经网络架构搜索改进GRU算法,得到N-GRU模型,将降维后的特征提取结果输入N-GRU做预测并得到重构误差,通过设定告警阈值实现状态评估;最后,以新疆某风场中2 MW风电机组为例,验证了该模型的有效性与准确性。 展开更多
关键词 Pearson相关系数 cnn分层特征提取 核主成分分析 N-GRU模型 重构误差
下载PDF
基于分层卷积神经网络的冬枣果实病害识别方法 被引量:1
2
作者 师韵 安琪 张善文 《东北农业科学》 2021年第4期128-134,共7页
冬枣皮薄肉脆,富含维生素C和矿物质,深受消费者喜爱。但冬枣病害种类繁多,采用传统人工检查的方式成本高、效率低,严重制约了冬枣的产业化发展。使用传统计算机视觉的冬枣病害识别方法其准确度在很大程度上取决于人为选择的特征是否合理... 冬枣皮薄肉脆,富含维生素C和矿物质,深受消费者喜爱。但冬枣病害种类繁多,采用传统人工检查的方式成本高、效率低,严重制约了冬枣的产业化发展。使用传统计算机视觉的冬枣病害识别方法其准确度在很大程度上取决于人为选择的特征是否合理,具有较大的不稳定性。为了解决该问题提出一种基于分层卷积神经网络(HCNN)的冬枣果实病害识别方法。HCNN包括三个结构相同的CNN(卷积神经网络)和一个支持向量机(SVM)分类器。在进行识别的过程中,首先将原始冬枣果实病害图像的RGB、HIS和Lab三种图像分别输入HCNN的三个CNN;然后在分类层将三个CNN得到的特征图整合为一个特征向量;最后通过SVM分类器对病害图像进行分类。该方法能够自动地从冬枣果实病害图像中提取到有效的特征,不需要人工设定特征提取方法。在果实病害图像数据集上进行一系列实验,平均识别准确率达90%以上。实验结果表明,该方法充分利用图像不同颜色的特征,能够实现精确、稳定和高效的冬枣果实病害类型识别,为冬枣果实病害防治系统的发展提供参考。 展开更多
关键词 冬枣果实病害识别 病害图像分割 卷积神经网络(cnn) 分层cnn(hcnn)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部