This paper presents the results from a numerical study on the nonlinear dynamic behaviors including bifurcation and chaos of a truss spar platform. In view of the mutual influences between the heave and the pitch mode...This paper presents the results from a numerical study on the nonlinear dynamic behaviors including bifurcation and chaos of a truss spar platform. In view of the mutual influences between the heave and the pitch modes, the coupled heave and pitch motion equations of the spar platform hull were established in the regular waves. In order to analyze the nonlinear motions of the platform, three-dimensional maximum Lyapunov exponent graphs and the bifurcation graphs were constructed, the Poincare maps and the power spectrums of the platform response were calculated. It was found that the platform motions are sensitive to wave fre- quency. With changing wave frequency, the platform undergoes complicated nonlinear motions, including 1/2 sub-harmonic motion, quasi-periodic motion and chaotic motion. When the wave frequency approaches the natural frequency of the heave mode of the platform, the platform moves with quasi-periodic motion and chaotic motional temately. For a certain range of wave frequencies, the platform moves with totally chaotic motion. The range of wave frequencies which leads to chaotic motion of the platform increases with increasing wave height. The three-dimensional maximum Lyapunov exponent graphs and the bifurcation graphs reveal the nonlinear motions of the spar platform under different wave conditions.展开更多
A nonlinear lateral-torsional coupled vibration model of a planetary gear system was established by taking transmission errors,time varying meshing stiffness and multiple gear backlashes into account.The bifurcation d...A nonlinear lateral-torsional coupled vibration model of a planetary gear system was established by taking transmission errors,time varying meshing stiffness and multiple gear backlashes into account.The bifurcation diagram of the system's motion state with rotational speed of sun gear was conducted through four steps.As a bifurcation parameter,the effect of rotational speed on the bifurcation properties of the system was assessed.The study results reveal that periodic motion is the main motion state of planetary gear train in low speed region when ns<2 350 r/min,but chaos motion state is dominant in high speed region when ns>2 350 r/min,The way of periodic motion to chaos is doubling bifurcation.There are two kinds of unstable modes and nine unstable regions in the speed region when 1 000 r/min<ns<3 000 r/min.展开更多
With the use of a wave model, the non-linear problem about realization of the Poincare-Hopf bifurcations in waveguiding systems is stated. The constitutive non-linear differential equations are deduced, the methods fo...With the use of a wave model, the non-linear problem about realization of the Poincare-Hopf bifurcations in waveguiding systems is stated. The constitutive non-linear differential equations are deduced, the methods for their solution are elaborated. The example of torsion wave propagation in an elongated drill string is considered. Computer simulation of auto-oscillation generation in the examined system is performed for the cases of stationary and non-stationary variations of the perturbation parameter. The diapason of the drilling rotation velocity values corresponding to regimes of stable self-excited periodic motions of the system is found. This domain is shown to be limited by the states of the Poincare-Hopf bifurcations. Owing to the feature that the stated problem is singularly perturbed, the autovibrations are of relaxation type with fast and slow motions. Influence of the length of the uniform and articulated drill strings on the bifurcation values of their angular velocities of generation and accomplishment of the auto-oscillation processes in the drill strings is discussed.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.51179125the Innovation Foundation of Tianjin University under Approving No.1301
文摘This paper presents the results from a numerical study on the nonlinear dynamic behaviors including bifurcation and chaos of a truss spar platform. In view of the mutual influences between the heave and the pitch modes, the coupled heave and pitch motion equations of the spar platform hull were established in the regular waves. In order to analyze the nonlinear motions of the platform, three-dimensional maximum Lyapunov exponent graphs and the bifurcation graphs were constructed, the Poincare maps and the power spectrums of the platform response were calculated. It was found that the platform motions are sensitive to wave fre- quency. With changing wave frequency, the platform undergoes complicated nonlinear motions, including 1/2 sub-harmonic motion, quasi-periodic motion and chaotic motion. When the wave frequency approaches the natural frequency of the heave mode of the platform, the platform moves with quasi-periodic motion and chaotic motional temately. For a certain range of wave frequencies, the platform moves with totally chaotic motion. The range of wave frequencies which leads to chaotic motion of the platform increases with increasing wave height. The three-dimensional maximum Lyapunov exponent graphs and the bifurcation graphs reveal the nonlinear motions of the spar platform under different wave conditions.
基金Project(50775108) supported by the National Natural Science Foundation of China
文摘A nonlinear lateral-torsional coupled vibration model of a planetary gear system was established by taking transmission errors,time varying meshing stiffness and multiple gear backlashes into account.The bifurcation diagram of the system's motion state with rotational speed of sun gear was conducted through four steps.As a bifurcation parameter,the effect of rotational speed on the bifurcation properties of the system was assessed.The study results reveal that periodic motion is the main motion state of planetary gear train in low speed region when ns<2 350 r/min,but chaos motion state is dominant in high speed region when ns>2 350 r/min,The way of periodic motion to chaos is doubling bifurcation.There are two kinds of unstable modes and nine unstable regions in the speed region when 1 000 r/min<ns<3 000 r/min.
文摘With the use of a wave model, the non-linear problem about realization of the Poincare-Hopf bifurcations in waveguiding systems is stated. The constitutive non-linear differential equations are deduced, the methods for their solution are elaborated. The example of torsion wave propagation in an elongated drill string is considered. Computer simulation of auto-oscillation generation in the examined system is performed for the cases of stationary and non-stationary variations of the perturbation parameter. The diapason of the drilling rotation velocity values corresponding to regimes of stable self-excited periodic motions of the system is found. This domain is shown to be limited by the states of the Poincare-Hopf bifurcations. Owing to the feature that the stated problem is singularly perturbed, the autovibrations are of relaxation type with fast and slow motions. Influence of the length of the uniform and articulated drill strings on the bifurcation values of their angular velocities of generation and accomplishment of the auto-oscillation processes in the drill strings is discussed.