A novel Support Vector Machine(SVM) ensemble approach using clustering analysis is proposed. Firstly,the positive and negative training examples are clustered through subtractive clus-tering algorithm respectively. Th...A novel Support Vector Machine(SVM) ensemble approach using clustering analysis is proposed. Firstly,the positive and negative training examples are clustered through subtractive clus-tering algorithm respectively. Then some representative examples are chosen from each of them to construct SVM components. At last,the outputs of the individual classifiers are fused through ma-jority voting method to obtain the final decision. Comparisons of performance between the proposed method and other popular ensemble approaches,such as Bagging,Adaboost and k.-fold cross valida-tion,are carried out on synthetic and UCI datasets. The experimental results show that our method has higher classification accuracy since the example distribution information is considered during en-semble through clustering analysis. It further indicates that our method needs a much smaller size of training subsets than Bagging and Adaboost to obtain satisfactory classification accuracy.展开更多
It is difficult to rescue people from outside, and emergency evacuation is still a main measure to decrease casualties in high-rise building fires. To improve evacuation efficiency, a valid and easily manipulated grou...It is difficult to rescue people from outside, and emergency evacuation is still a main measure to decrease casualties in high-rise building fires. To improve evacuation efficiency, a valid and easily manipulated grouping evacuation strategy is proposed. Occupants escape in groups according to the shortest evacuation route is determined by graph theory. In order to evaluate and find the optimal grouping, computational experiments are performed to design and simulate the evacuation processes. A case study shown the application in detail and quantitative research conclusions is obtained. The thoughts and approaches of this study can be used to guide actual high-rise building evacuation processes in future.展开更多
Fault detection and identification are challenging tasks in chemical processes, the aim of which is to decide out of control samples and find fault sensors timely and effectively. This paper develops a partitioning pr...Fault detection and identification are challenging tasks in chemical processes, the aim of which is to decide out of control samples and find fault sensors timely and effectively. This paper develops a partitioning principal component analysis(PPCA) method for process monitoring. A variable reasoning strategy is proposed and applied to recognize multiple fault variables. Compared with traditional process monitoring methods, the PPCA strategy not only reflects the local behavior of process variation in each model(each direction of principal components),but also improves the monitoring performance through the combination of local monitoring results. Then, a variable reasoning strategy is introduced to locate fault variables. Unlike the contribution plot, this method locates normal and fault variables effectively, and gives initiatory judgment for ambiguous variables. Finally, the effectiveness of the proposed process monitoring and fault variable identification schemes is verified through a numerical example and TE chemical process.展开更多
基金the National Natural Science Foundation of China (No.60472072)the Specialized Research Foundation for the Doctoral Program of Higher Educa-tion of China (No.20040699034).
文摘A novel Support Vector Machine(SVM) ensemble approach using clustering analysis is proposed. Firstly,the positive and negative training examples are clustered through subtractive clus-tering algorithm respectively. Then some representative examples are chosen from each of them to construct SVM components. At last,the outputs of the individual classifiers are fused through ma-jority voting method to obtain the final decision. Comparisons of performance between the proposed method and other popular ensemble approaches,such as Bagging,Adaboost and k.-fold cross valida-tion,are carried out on synthetic and UCI datasets. The experimental results show that our method has higher classification accuracy since the example distribution information is considered during en-semble through clustering analysis. It further indicates that our method needs a much smaller size of training subsets than Bagging and Adaboost to obtain satisfactory classification accuracy.
基金supported by Beijing University of Civil Engineering and Architecture Nature Science(ZF16078,X18067)
文摘It is difficult to rescue people from outside, and emergency evacuation is still a main measure to decrease casualties in high-rise building fires. To improve evacuation efficiency, a valid and easily manipulated grouping evacuation strategy is proposed. Occupants escape in groups according to the shortest evacuation route is determined by graph theory. In order to evaluate and find the optimal grouping, computational experiments are performed to design and simulate the evacuation processes. A case study shown the application in detail and quantitative research conclusions is obtained. The thoughts and approaches of this study can be used to guide actual high-rise building evacuation processes in future.
基金Supported by the National Natural Science Foundation of China(61374137,61490701,61174119)the State Key Laboratory of Integrated Automation of Process Industry Technology and Research Center of National Metallurgical Automation Fundamental Research Funds(2013ZCX02-03)
文摘Fault detection and identification are challenging tasks in chemical processes, the aim of which is to decide out of control samples and find fault sensors timely and effectively. This paper develops a partitioning principal component analysis(PPCA) method for process monitoring. A variable reasoning strategy is proposed and applied to recognize multiple fault variables. Compared with traditional process monitoring methods, the PPCA strategy not only reflects the local behavior of process variation in each model(each direction of principal components),but also improves the monitoring performance through the combination of local monitoring results. Then, a variable reasoning strategy is introduced to locate fault variables. Unlike the contribution plot, this method locates normal and fault variables effectively, and gives initiatory judgment for ambiguous variables. Finally, the effectiveness of the proposed process monitoring and fault variable identification schemes is verified through a numerical example and TE chemical process.