Using the Nevanlinna theory of the value distribution of meromorphic functions, we investigate the existence problem of admissible algebroid solutions of generalized complex algebraic differential equations and obtain...Using the Nevanlinna theory of the value distribution of meromorphic functions, we investigate the existence problem of admissible algebroid solutions of generalized complex algebraic differential equations and obtain some results.展开更多
By using small function method, the following result is obtained. If f(z) is transcendental meromorphic and that ψ(z) is non-zero meromorphic and that T(r,ψ) = S(r, f), then(n+1)T(r,f)≤N^-(r,1/f'f^n...By using small function method, the following result is obtained. If f(z) is transcendental meromorphic and that ψ(z) is non-zero meromorphic and that T(r,ψ) = S(r, f), then(n+1)T(r,f)≤N^-(r,1/f'f^n-ψ)+2N^-(r,1/f)+N^-(r,f)+S(r,f).展开更多
The influence of heterogeneity on mechanical and acoustic emission characteristics of rock specimen under uniaxial compress was studied with numerical simulation methods.Weibull distribution function was adopted to de...The influence of heterogeneity on mechanical and acoustic emission characteristics of rock specimen under uniaxial compress was studied with numerical simulation methods.Weibull distribution function was adopted to describe the mesoscopic heterogeneity of rocks.The failure process of heterogeneous rock specimen under uniaxial loading was simulated using FLAC 3D software.Five schemes were adopted to investigate the influence of heterogeneity.The results demonstrate that as the homogeneity increases,the peak strength and brittleness of rocks increase,and the macro elastic modulus improves as well.Heterogeneity has great influence on macro elastic modulus and strength when the homogeneity coefficient is less than 20.0.The volume expansion is not so obvious when the homogeneity increases.As the homogeneity coefficient increases the acoustic emissions modes change from swarm shock to main shock.When the homogeneity coefficient is high,the cumulative acoustic emission events-axial strain curve is gentle before the rock failure.The numerical results agree with the previously numerical results and earlier experimental measurements.展开更多
The sequences {Zi,n, 1≤i≤n}, n≥1 are multi-nomial distribution among i.i.d, random variables {X1,i, i≥1}, {X2,i, i≥1 } {Xm,i, i≥1 }. The extreme value distribution Gz(x) of this particular triangular array of ...The sequences {Zi,n, 1≤i≤n}, n≥1 are multi-nomial distribution among i.i.d, random variables {X1,i, i≥1}, {X2,i, i≥1 } {Xm,i, i≥1 }. The extreme value distribution Gz(x) of this particular triangular array of i.i,d, random variables Z1,n, Z2 n,...,Zn,n is discussed. A new type of not max-stable extreme value distributions which are Fréchet mixture, Gumbel mixture and Weibull mixture has been found if Fj,…… Fm belong to the same MDA. Whether mixtures of different types of extreme value distributions exist or not and the more general case are discussed in this paper. We found that Gz(x) does not exist as mixture forms of the different types of extreme value distributions after we investigated all cases.展开更多
In this paper, the uniqueness of meromorphic functions with common range sets and deficient values are studied. This result is related to a question of Gross.
文摘Using the Nevanlinna theory of the value distribution of meromorphic functions, we investigate the existence problem of admissible algebroid solutions of generalized complex algebraic differential equations and obtain some results.
基金Supported by the Nature Science foundation of Henan Province(0211050200)
文摘By using small function method, the following result is obtained. If f(z) is transcendental meromorphic and that ψ(z) is non-zero meromorphic and that T(r,ψ) = S(r, f), then(n+1)T(r,f)≤N^-(r,1/f'f^n-ψ)+2N^-(r,1/f)+N^-(r,f)+S(r,f).
基金Project(2007CB209407) supported by the National Basic Research Program of ChinaProject(50729904) supported by the National Natural Science Foundation of China
文摘The influence of heterogeneity on mechanical and acoustic emission characteristics of rock specimen under uniaxial compress was studied with numerical simulation methods.Weibull distribution function was adopted to describe the mesoscopic heterogeneity of rocks.The failure process of heterogeneous rock specimen under uniaxial loading was simulated using FLAC 3D software.Five schemes were adopted to investigate the influence of heterogeneity.The results demonstrate that as the homogeneity increases,the peak strength and brittleness of rocks increase,and the macro elastic modulus improves as well.Heterogeneity has great influence on macro elastic modulus and strength when the homogeneity coefficient is less than 20.0.The volume expansion is not so obvious when the homogeneity increases.As the homogeneity coefficient increases the acoustic emissions modes change from swarm shock to main shock.When the homogeneity coefficient is high,the cumulative acoustic emission events-axial strain curve is gentle before the rock failure.The numerical results agree with the previously numerical results and earlier experimental measurements.
基金Project partially supported by the National Natural Science Foundation of Switzerland
文摘The sequences {Zi,n, 1≤i≤n}, n≥1 are multi-nomial distribution among i.i.d, random variables {X1,i, i≥1}, {X2,i, i≥1 } {Xm,i, i≥1 }. The extreme value distribution Gz(x) of this particular triangular array of i.i,d, random variables Z1,n, Z2 n,...,Zn,n is discussed. A new type of not max-stable extreme value distributions which are Fréchet mixture, Gumbel mixture and Weibull mixture has been found if Fj,…… Fm belong to the same MDA. Whether mixtures of different types of extreme value distributions exist or not and the more general case are discussed in this paper. We found that Gz(x) does not exist as mixture forms of the different types of extreme value distributions after we investigated all cases.
文摘In this paper, the uniqueness of meromorphic functions with common range sets and deficient values are studied. This result is related to a question of Gross.