自动调制识别在无线通信领域发挥了巨大作用。多数研究中假设的加性高斯白噪声信道已不再满足实际信道环境的准确描述。实际中,由于闪电、雷暴、多用户干扰、设备故障等原因,信道环境中广泛存在Alpha稳定分布噪声。因此对其开展研究更...自动调制识别在无线通信领域发挥了巨大作用。多数研究中假设的加性高斯白噪声信道已不再满足实际信道环境的准确描述。实际中,由于闪电、雷暴、多用户干扰、设备故障等原因,信道环境中广泛存在Alpha稳定分布噪声。因此对其开展研究更符合实际且具有挑战性。该文针对Alpha稳定分布噪声提出了一种预处理联合轻量级网络的调制识别方法。首先,通过对数域映射及阈值限制对接收信号进行预处理,抑制由Alpha稳定分布噪声带来的尖锐脉冲将信号幅度控制到合理范围;然后,提出一种基于Ghost模块的轻量级网络来完成信号的调制识别分类任务。实验结果表明,与现有的CLDNN(Convolutional Long Short-term Deep Neural Network)、CNN(Convolutional Neural Network)、ResNe(t Residual Network)相比,本文所提方法具有较高的识别准确率及较低的计算复杂度。展开更多
针对传统滤波方法在α稳定分布噪声环境下性能退化的问题,从加权Myriad滤波以及加权Merid滤波方法出发,以M估计理论为基础,推导得到稳健加权(robust weighted,RW)滤波方法的统一算法结构,并据此提出了基于RW滤波的新算法,即基于稳健加...针对传统滤波方法在α稳定分布噪声环境下性能退化的问题,从加权Myriad滤波以及加权Merid滤波方法出发,以M估计理论为基础,推导得到稳健加权(robust weighted,RW)滤波方法的统一算法结构,并据此提出了基于RW滤波的新算法,即基于稳健加权滤波的统一框架,从而将加权Myriad、加权Merid以及基于广义柯西分布的加权滤波器统一起来。此外,针对线性调频(linear frequency modulation,LFM)信号采用基于RW的LVD(RW-LVD)方法估计其参数,并根据估计性能对RW方法的抑噪效果进行分析。仿真结果表明,与基于加权Myriad滤波、加权Merid滤波以及基于广义柯西分布的加权滤波等多种方法相比,在强脉冲噪声下RW滤波方法能有效抑制脉冲噪声,并具有良好的稳健性。展开更多
针对现有的复合调制信号参数估计方法在Alpha稳定分布噪声中性能严重退化的问题,提出一种基于L-DFT(L-Filter-Based DFT)的线性调频与相位编码(Linear Frequency Modulation and Binary Phase Shift Keying,LFM-BPSK)复合调制信号参数...针对现有的复合调制信号参数估计方法在Alpha稳定分布噪声中性能严重退化的问题,提出一种基于L-DFT(L-Filter-Based DFT)的线性调频与相位编码(Linear Frequency Modulation and Binary Phase Shift Keying,LFM-BPSK)复合调制信号参数估计方法。该方法首先定义了L-DCFT(L-Filter Based Discrete Chirp-Fourier Transform),平方倍频法消除编码调相后,采用L-DCFT估计信号的起始频率和调制斜率;分析了循环自相关函数中脉冲出现概率增大的问题,提出了基于改进L-DFT和循环统计量的码速率估计方法。仿真结果表明,基于L-DFT的参数估计方法能有效抑制脉冲噪声,在强脉冲噪声中具有良好的参数估计性能。展开更多
传统的伪多普勒测向算法在高信噪比和高斯噪声环境下能较为精确地计算出到达方位角,但对于稳定分布噪声的顽健性较差。针对以上不足,提出了一种基于粒子滤波的双站伪多普勒定位方法。用粒子滤波对2个接收机的来波方位角进行联合估计,并...传统的伪多普勒测向算法在高信噪比和高斯噪声环境下能较为精确地计算出到达方位角,但对于稳定分布噪声的顽健性较差。针对以上不足,提出了一种基于粒子滤波的双站伪多普勒定位方法。用粒子滤波对2个接收机的来波方位角进行联合估计,并通过非线性映射得到信源位置坐标估计,实现了方位角计算与双站定位的集成。仿真实验表明,当稳定分布参数α为1.4(中等脉冲程度)时,所提方法在低信噪比下的顽健性要显著优于传统方法,在高信噪比时估计精度与传统方法相当;当信噪比为10 d B时,所提方法在α<1.9的情况下定位精度远高于传统方法。展开更多
文摘自动调制识别在无线通信领域发挥了巨大作用。多数研究中假设的加性高斯白噪声信道已不再满足实际信道环境的准确描述。实际中,由于闪电、雷暴、多用户干扰、设备故障等原因,信道环境中广泛存在Alpha稳定分布噪声。因此对其开展研究更符合实际且具有挑战性。该文针对Alpha稳定分布噪声提出了一种预处理联合轻量级网络的调制识别方法。首先,通过对数域映射及阈值限制对接收信号进行预处理,抑制由Alpha稳定分布噪声带来的尖锐脉冲将信号幅度控制到合理范围;然后,提出一种基于Ghost模块的轻量级网络来完成信号的调制识别分类任务。实验结果表明,与现有的CLDNN(Convolutional Long Short-term Deep Neural Network)、CNN(Convolutional Neural Network)、ResNe(t Residual Network)相比,本文所提方法具有较高的识别准确率及较低的计算复杂度。
文摘针对传统滤波方法在α稳定分布噪声环境下性能退化的问题,从加权Myriad滤波以及加权Merid滤波方法出发,以M估计理论为基础,推导得到稳健加权(robust weighted,RW)滤波方法的统一算法结构,并据此提出了基于RW滤波的新算法,即基于稳健加权滤波的统一框架,从而将加权Myriad、加权Merid以及基于广义柯西分布的加权滤波器统一起来。此外,针对线性调频(linear frequency modulation,LFM)信号采用基于RW的LVD(RW-LVD)方法估计其参数,并根据估计性能对RW方法的抑噪效果进行分析。仿真结果表明,与基于加权Myriad滤波、加权Merid滤波以及基于广义柯西分布的加权滤波等多种方法相比,在强脉冲噪声下RW滤波方法能有效抑制脉冲噪声,并具有良好的稳健性。
文摘针对现有的复合调制信号参数估计方法在Alpha稳定分布噪声中性能严重退化的问题,提出一种基于L-DFT(L-Filter-Based DFT)的线性调频与相位编码(Linear Frequency Modulation and Binary Phase Shift Keying,LFM-BPSK)复合调制信号参数估计方法。该方法首先定义了L-DCFT(L-Filter Based Discrete Chirp-Fourier Transform),平方倍频法消除编码调相后,采用L-DCFT估计信号的起始频率和调制斜率;分析了循环自相关函数中脉冲出现概率增大的问题,提出了基于改进L-DFT和循环统计量的码速率估计方法。仿真结果表明,基于L-DFT的参数估计方法能有效抑制脉冲噪声,在强脉冲噪声中具有良好的参数估计性能。
文摘传统的伪多普勒测向算法在高信噪比和高斯噪声环境下能较为精确地计算出到达方位角,但对于稳定分布噪声的顽健性较差。针对以上不足,提出了一种基于粒子滤波的双站伪多普勒定位方法。用粒子滤波对2个接收机的来波方位角进行联合估计,并通过非线性映射得到信源位置坐标估计,实现了方位角计算与双站定位的集成。仿真实验表明,当稳定分布参数α为1.4(中等脉冲程度)时,所提方法在低信噪比下的顽健性要显著优于传统方法,在高信噪比时估计精度与传统方法相当;当信噪比为10 d B时,所提方法在α<1.9的情况下定位精度远高于传统方法。