针对相干分布式非圆信号参数估计算法在脉冲噪声环境下性能退化的问题,本文提出了广义复相关熵的概念,并给出了基于广义复相关熵的相干分布式非圆信号DOA(Direction of Arrival)估计方法。该算法首先由分布式信源模型获得入射信号的阵...针对相干分布式非圆信号参数估计算法在脉冲噪声环境下性能退化的问题,本文提出了广义复相关熵的概念,并给出了基于广义复相关熵的相干分布式非圆信号DOA(Direction of Arrival)估计方法。该算法首先由分布式信源模型获得入射信号的阵列输出信号,利用信号的非圆特性得到扩展阵列输出信号,再通过扩展阵列输出信号的广义复相关熵矩阵获取信号子空间,避开了传统二阶统计量算法在脉冲噪声下不适应的问题,最后由信号子空间旋转不变特性得到信号的中心波达方向角度。仿真实验结果表明,在Alpha稳定分布噪声条件下,与传统算法相比,本文所提算法具有更好的性能。展开更多
文摘针对相干分布式非圆信号参数估计算法在脉冲噪声环境下性能退化的问题,本文提出了广义复相关熵的概念,并给出了基于广义复相关熵的相干分布式非圆信号DOA(Direction of Arrival)估计方法。该算法首先由分布式信源模型获得入射信号的阵列输出信号,利用信号的非圆特性得到扩展阵列输出信号,再通过扩展阵列输出信号的广义复相关熵矩阵获取信号子空间,避开了传统二阶统计量算法在脉冲噪声下不适应的问题,最后由信号子空间旋转不变特性得到信号的中心波达方向角度。仿真实验结果表明,在Alpha稳定分布噪声条件下,与传统算法相比,本文所提算法具有更好的性能。