There are some limitations when we apply conventional methods to analyze the massive amounts of seismic data acquired with high-density spatial sampling since processors usually obtain the properties of raw data from ...There are some limitations when we apply conventional methods to analyze the massive amounts of seismic data acquired with high-density spatial sampling since processors usually obtain the properties of raw data from common shot gathers or other datasets located at certain points or along lines. We propose a novel method in this paper to observe seismic data on time slices from spatial subsets. The composition of a spatial subset and the unique character of orthogonal or oblique subsets are described and pre-stack subsets are shown by 3D visualization. In seismic data processing, spatial subsets can be used for the following aspects: (1) to check the trace distribution uniformity and regularity; (2) to observe the main features of ground-roll and linear noise; (3) to find abnormal traces from slices of datasets; and (4) to QC the results of pre-stack noise attenuation. The field data application shows that seismic data analysis in spatial subsets is an effective method that may lead to a better discrimination among various wavefields and help us obtain more information.展开更多
We report a method to produce a uniform mixture of uranium dioxide spherical particles in a tungsten matrix. This method involves mixing 0.5 weight percent of high density polyethylene binder with 60 volume percent ur...We report a method to produce a uniform mixture of uranium dioxide spherical particles in a tungsten matrix. This method involves mixing 0.5 weight percent of high density polyethylene binder with 60 volume percent uranium dioxide spheres and 40 volume percent tungsten powders. Initially, hafnium oxide spheres were used as a surrogate for uranium dioxide spheres. The HfO2/W/PE powders were thoroughly mixed in a Turbula, then mixed on a hot plate above the drop point of the binder. These powders were then densified using spark plasma sintering. Microstructure was evaluated using scanning electron microscopy, density was measured and hardness measurements were made. Initial carbon content of the powders were measured and carbon content of the sintered materials was measured. Subsequently, W/UO2/Binder powders were mixed using the same methodology to ensure the process could be used for this system. These powders were sintered using hot isostatic pressing and microstructures evaluated. The resultant microstructures contained uniform distribution of HfO2 and UO2 particles in the tungsten matrix with very low carbon content.展开更多
We propose a weighted clique network evolution model, which expands continuously by the addition of a new clique (maximal complete sub-graph) at. each time step. And the cliques in the network overlap with each othe...We propose a weighted clique network evolution model, which expands continuously by the addition of a new clique (maximal complete sub-graph) at. each time step. And the cliques in the network overlap with each other. The structural expansion of the weighted clique network is combined with the edges' weight and vertices' strengths dynamical evolution. The model is based on a weight-driven dynamics and a weights' enhancement mechanism combining with the network growth. We study the network properties, which include the distribution of vertices' strength and the distribution o~ edges' weight, and find that both the distributions follow the scale-free distribution. At the same time, we also find that the relationship between strength and degree of a vertex are linear correlation during the growth of the network. On the basis of mean-field theory, we study the weighted network model and prove that both vertices' strength and edges' weight of this model follow the scale-free distribution. And we exploit an algorithm to forecast the network dynamics, which can be used to reckon the distributions and the corresponding scaling exponents. Furthermore, we observe that mean-field based theoretic results are consistent with the statistical data of the model, which denotes the theoretical result in this paper is effective.展开更多
This paper discussed impact of temperature on the size distribution in preparing ultrafine silica from rice husk.The samples prepared were analyzed with infrared spectrum,and the relation between the particle size and...This paper discussed impact of temperature on the size distribution in preparing ultrafine silica from rice husk.The samples prepared were analyzed with infrared spectrum,and the relation between the particle size and intensity of characteristic absorption peak of IR at center around 1 100 cm-1 was disscussed with the baseline method.Results show that when the temperature is 650 ℃ and roasting time is 11 h,at optimal reaction conditions,the size distribution of the ultrafine silica powder prepared is relatively concentrated,and the average particle size is 199.5 nm.Moreover,the characteristic absorption band of IR is broadening gradually along with particle size decreasing.展开更多
Through in situ redox deposition and growth of MnO2 nanostructures on hierarchically porous carbon (HPC), a MnOR/HPC hybrid has been synthesized and employed as cathode catalyst for non-aqueous Li-O2 batteries. Owin...Through in situ redox deposition and growth of MnO2 nanostructures on hierarchically porous carbon (HPC), a MnOR/HPC hybrid has been synthesized and employed as cathode catalyst for non-aqueous Li-O2 batteries. Owing to the mild synthetic conditions, MnO2 was uniformly distributed on the surface of the carbon support, without destroying the hierarchical porous nanostructure. As a result, the as-prepared MnO2/HPC nanocomposite exhibits excellent Li-O2 battery performance, including low charge overpotential, good rate capacity and long cycle stability up to 300 cycles with controlling capacity of 1,000 mAh·g^-1. A combination of the multi-scale porous network of the shell-connected carbon support and the highly dispersed MnO2 nanostructure benefits the transportation of ions, oxygen and electrons and contributes to the excellent electrode performance.展开更多
A finite element analysis(FEA)model is developed for the chemical-mechanical polishing(CMP)process on the basis of a 12-in five-zone polishing head.The proposed FEA model shows that the contact stress non-uniformity i...A finite element analysis(FEA)model is developed for the chemical-mechanical polishing(CMP)process on the basis of a 12-in five-zone polishing head.The proposed FEA model shows that the contact stress non-uniformity is less dependent on the material property of the membrane and the geometry of the retaining ring.The larger the elastic modulus of the pad,the larger contact stress non-uniformity of the wafer.The applied loads on retaining ring and zone of the polishing head significantly affect the contact stress distribution.The stress adjustment ability of a zone depends on its position.In particular,the inner-side zone has a high stress adjustment ability,whereas the outer-side zone has a low stress adjustment ability.The predicted results by the model are shown to be consistent with the experimental data.Analysis results have revealed some insights regarding the performance of the multi-zone CMP.展开更多
文摘There are some limitations when we apply conventional methods to analyze the massive amounts of seismic data acquired with high-density spatial sampling since processors usually obtain the properties of raw data from common shot gathers or other datasets located at certain points or along lines. We propose a novel method in this paper to observe seismic data on time slices from spatial subsets. The composition of a spatial subset and the unique character of orthogonal or oblique subsets are described and pre-stack subsets are shown by 3D visualization. In seismic data processing, spatial subsets can be used for the following aspects: (1) to check the trace distribution uniformity and regularity; (2) to observe the main features of ground-roll and linear noise; (3) to find abnormal traces from slices of datasets; and (4) to QC the results of pre-stack noise attenuation. The field data application shows that seismic data analysis in spatial subsets is an effective method that may lead to a better discrimination among various wavefields and help us obtain more information.
文摘We report a method to produce a uniform mixture of uranium dioxide spherical particles in a tungsten matrix. This method involves mixing 0.5 weight percent of high density polyethylene binder with 60 volume percent uranium dioxide spheres and 40 volume percent tungsten powders. Initially, hafnium oxide spheres were used as a surrogate for uranium dioxide spheres. The HfO2/W/PE powders were thoroughly mixed in a Turbula, then mixed on a hot plate above the drop point of the binder. These powders were then densified using spark plasma sintering. Microstructure was evaluated using scanning electron microscopy, density was measured and hardness measurements were made. Initial carbon content of the powders were measured and carbon content of the sintered materials was measured. Subsequently, W/UO2/Binder powders were mixed using the same methodology to ensure the process could be used for this system. These powders were sintered using hot isostatic pressing and microstructures evaluated. The resultant microstructures contained uniform distribution of HfO2 and UO2 particles in the tungsten matrix with very low carbon content.
基金Supported by National Natural Science Foundation of China under Grant Nos. 60504027 and 60874080the Open Project of State Key Lab of Industrial Control Technology under Grant No. ICT1107
文摘We propose a weighted clique network evolution model, which expands continuously by the addition of a new clique (maximal complete sub-graph) at. each time step. And the cliques in the network overlap with each other. The structural expansion of the weighted clique network is combined with the edges' weight and vertices' strengths dynamical evolution. The model is based on a weight-driven dynamics and a weights' enhancement mechanism combining with the network growth. We study the network properties, which include the distribution of vertices' strength and the distribution o~ edges' weight, and find that both the distributions follow the scale-free distribution. At the same time, we also find that the relationship between strength and degree of a vertex are linear correlation during the growth of the network. On the basis of mean-field theory, we study the weighted network model and prove that both vertices' strength and edges' weight of this model follow the scale-free distribution. And we exploit an algorithm to forecast the network dynamics, which can be used to reckon the distributions and the corresponding scaling exponents. Furthermore, we observe that mean-field based theoretic results are consistent with the statistical data of the model, which denotes the theoretical result in this paper is effective.
文摘This paper discussed impact of temperature on the size distribution in preparing ultrafine silica from rice husk.The samples prepared were analyzed with infrared spectrum,and the relation between the particle size and intensity of characteristic absorption peak of IR at center around 1 100 cm-1 was disscussed with the baseline method.Results show that when the temperature is 650 ℃ and roasting time is 11 h,at optimal reaction conditions,the size distribution of the ultrafine silica powder prepared is relatively concentrated,and the average particle size is 199.5 nm.Moreover,the characteristic absorption band of IR is broadening gradually along with particle size decreasing.
文摘Through in situ redox deposition and growth of MnO2 nanostructures on hierarchically porous carbon (HPC), a MnOR/HPC hybrid has been synthesized and employed as cathode catalyst for non-aqueous Li-O2 batteries. Owing to the mild synthetic conditions, MnO2 was uniformly distributed on the surface of the carbon support, without destroying the hierarchical porous nanostructure. As a result, the as-prepared MnO2/HPC nanocomposite exhibits excellent Li-O2 battery performance, including low charge overpotential, good rate capacity and long cycle stability up to 300 cycles with controlling capacity of 1,000 mAh·g^-1. A combination of the multi-scale porous network of the shell-connected carbon support and the highly dispersed MnO2 nanostructure benefits the transportation of ions, oxygen and electrons and contributes to the excellent electrode performance.
基金supported by the Science Fund for Creative Research Groups (Grant No. 51021064)the National Natural Science Foundation of China (Grant No. 51205226)the China Postdoctoral Science Foundation (Grant No. 2012M510420)
文摘A finite element analysis(FEA)model is developed for the chemical-mechanical polishing(CMP)process on the basis of a 12-in five-zone polishing head.The proposed FEA model shows that the contact stress non-uniformity is less dependent on the material property of the membrane and the geometry of the retaining ring.The larger the elastic modulus of the pad,the larger contact stress non-uniformity of the wafer.The applied loads on retaining ring and zone of the polishing head significantly affect the contact stress distribution.The stress adjustment ability of a zone depends on its position.In particular,the inner-side zone has a high stress adjustment ability,whereas the outer-side zone has a low stress adjustment ability.The predicted results by the model are shown to be consistent with the experimental data.Analysis results have revealed some insights regarding the performance of the multi-zone CMP.