针对高维网络数据存在大量冗余和不相关的特征导致入侵检测准确率低的问题,提出了一种改进的多因子优化蝙蝠算法(IMFBA)用于数据特征选择,筛选出具有最大信息量的特征子集,提高网络入侵检测精度。首先,在多因子优化框架下设计全局特征...针对高维网络数据存在大量冗余和不相关的特征导致入侵检测准确率低的问题,提出了一种改进的多因子优化蝙蝠算法(IMFBA)用于数据特征选择,筛选出具有最大信息量的特征子集,提高网络入侵检测精度。首先,在多因子优化框架下设计全局特征选择任务和局部特征选择任务,并通过基于蝙蝠算法所设计的选型交配和垂直文化传播算子实现不同任务间的信息共享,从而帮助全局特征选择任务更快锁定最优解空间,提高算法收敛速度和稳定性。其次,通过将反向学习策略和差分进化引入蝙蝠算法,重新设计算法初始解选择阶段及个体更新过程,弥补其缺少突变机制的不足,增强解的多样性,帮助算法摆脱局部最优。最后,提出一种自适应参数调整策略,根据潜在最优解质量决定其指导个体更新的权重,避免在多任务特征选择过程中出现知识负迁移现象,实现全局搜索与局部开发之间的平衡。实验结果表明:IMFBA所选特征子集对网络入侵数据集KDD CUP 99和NSL-KDD分类结果的准确率分别为95.37%和85.14%,相较于完整特征集提升了3.01百分点和9.78百分点。IMFBA算法能选择更高质量特征子集并提升网络入侵检测准确率。展开更多
文摘针对高维网络数据存在大量冗余和不相关的特征导致入侵检测准确率低的问题,提出了一种改进的多因子优化蝙蝠算法(IMFBA)用于数据特征选择,筛选出具有最大信息量的特征子集,提高网络入侵检测精度。首先,在多因子优化框架下设计全局特征选择任务和局部特征选择任务,并通过基于蝙蝠算法所设计的选型交配和垂直文化传播算子实现不同任务间的信息共享,从而帮助全局特征选择任务更快锁定最优解空间,提高算法收敛速度和稳定性。其次,通过将反向学习策略和差分进化引入蝙蝠算法,重新设计算法初始解选择阶段及个体更新过程,弥补其缺少突变机制的不足,增强解的多样性,帮助算法摆脱局部最优。最后,提出一种自适应参数调整策略,根据潜在最优解质量决定其指导个体更新的权重,避免在多任务特征选择过程中出现知识负迁移现象,实现全局搜索与局部开发之间的平衡。实验结果表明:IMFBA所选特征子集对网络入侵数据集KDD CUP 99和NSL-KDD分类结果的准确率分别为95.37%和85.14%,相较于完整特征集提升了3.01百分点和9.78百分点。IMFBA算法能选择更高质量特征子集并提升网络入侵检测准确率。