针对多小区多用户分布式大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)上行系统,考虑移动环境下信道时变特性,并结合多小区导频污染和信道估计误差条件,分析这类因素对系统可达速率的性能影响。采用一阶高斯马尔科夫过程对...针对多小区多用户分布式大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)上行系统,考虑移动环境下信道时变特性,并结合多小区导频污染和信道估计误差条件,分析这类因素对系统可达速率的性能影响。采用一阶高斯马尔科夫过程对时变信道进行建模,以时间相关性系数为时变信道参量描述信道系数随时间变化的快慢程度。当基站采用最大比合并(Maximum Ratio Combining,MRC)接收机时,利用Jensen不等式、随机矩阵理论和Gamma随机变量的各阶矩,推导得出了包含导频污染、信道估计误差和信道时变参量的可达速率解析表达式。基于此,分析得出在多小区分布式大规模MIMO系统中,时变信道参量只会影响系统的可达速率绝对值,而不会影响发射功率缩放律。更重要的是,当不考虑发射功率缩放时,随总天线数增加,可达速率将不受时变信道的影响,而只由导频污染所决定,这表明该系统对时变信道具有良好的鲁棒性。最后,利用蒙特卡洛数值仿真验证了所得出的结论的正确性和有效性。展开更多
无小区大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)与非正交多址接入(Non-Orthogonal Multiple Access,NOMA)都是未来6G的使能技术。无线携能通信(Simultaneous Wireless Information and Power Transfer,SWIPT)技术在进...无小区大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)与非正交多址接入(Non-Orthogonal Multiple Access,NOMA)都是未来6G的使能技术。无线携能通信(Simultaneous Wireless Information and Power Transfer,SWIPT)技术在进行信息解码的同时收集能量,与无小区大规模MIMO-NOMA优势互补。文中基于SWIPT研究无小区大规模MIMO-NOMA系统中的能量效率问题,通过联合优化功率分配系数和SWIPT的时隙切换(Time Switching,TS)系数,提高系统的能量效率。为了最大化能量效率,采用布谷鸟算法设计功率分配系数。考虑一种特殊情况,将所有终端的TS系数设置相同,进而推导了最佳TS系数的封闭表达式。仿真结果表明,相较于几种已有方案,文中提出的优化方案可以显著提升系统的能量效率。展开更多
文摘针对多小区多用户分布式大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)上行系统,考虑移动环境下信道时变特性,并结合多小区导频污染和信道估计误差条件,分析这类因素对系统可达速率的性能影响。采用一阶高斯马尔科夫过程对时变信道进行建模,以时间相关性系数为时变信道参量描述信道系数随时间变化的快慢程度。当基站采用最大比合并(Maximum Ratio Combining,MRC)接收机时,利用Jensen不等式、随机矩阵理论和Gamma随机变量的各阶矩,推导得出了包含导频污染、信道估计误差和信道时变参量的可达速率解析表达式。基于此,分析得出在多小区分布式大规模MIMO系统中,时变信道参量只会影响系统的可达速率绝对值,而不会影响发射功率缩放律。更重要的是,当不考虑发射功率缩放时,随总天线数增加,可达速率将不受时变信道的影响,而只由导频污染所决定,这表明该系统对时变信道具有良好的鲁棒性。最后,利用蒙特卡洛数值仿真验证了所得出的结论的正确性和有效性。
文摘无小区大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)与非正交多址接入(Non-Orthogonal Multiple Access,NOMA)都是未来6G的使能技术。无线携能通信(Simultaneous Wireless Information and Power Transfer,SWIPT)技术在进行信息解码的同时收集能量,与无小区大规模MIMO-NOMA优势互补。文中基于SWIPT研究无小区大规模MIMO-NOMA系统中的能量效率问题,通过联合优化功率分配系数和SWIPT的时隙切换(Time Switching,TS)系数,提高系统的能量效率。为了最大化能量效率,采用布谷鸟算法设计功率分配系数。考虑一种特殊情况,将所有终端的TS系数设置相同,进而推导了最佳TS系数的封闭表达式。仿真结果表明,相较于几种已有方案,文中提出的优化方案可以显著提升系统的能量效率。