This paper presents an analytical saturation throughput model of IEEE 802.11 DCF (distributed coordination function) with basic access in ad hoc mode. The model takes into account freezing of the backoff timer when a ...This paper presents an analytical saturation throughput model of IEEE 802.11 DCF (distributed coordination function) with basic access in ad hoc mode. The model takes into account freezing of the backoff timer when a station senses busy channel. It is shown that taking into account this feature of DCF is important in modeling saturation throughput by yielding more accurate and realistic results than models known from literature. The proposed analytical model also takes into account the effect of transmission errors. All essential features of the proposed analytical approach are illustrated with numerical results. The presen-tation of the model is proceeded by an overview of approaches to IEEE 802.11 network performance evaluation presented in the literature.展开更多
IEEE 802.11 distributed coordination function(DCF)can alleviate the collision and hidden station problem,but it doesn't differentiate traffic categories(TC).Therefore,it can't provide sufficient quality of ser...IEEE 802.11 distributed coordination function(DCF)can alleviate the collision and hidden station problem,but it doesn't differentiate traffic categories(TC).Therefore,it can't provide sufficient quality of service(QoS)support for different TC.Recently,a new contention-based enhanced distributed channel access(EDCA)scheme is proposed which provides a probabilistic QoS support.In this paper,an improved EDCA scheme for service differentiation in ad hoc networks is proposed.In this scheme,signal channel resistance coefficient is used to adjust the contention window(CW).It proves that the scheme provides the traffic differentiation,high throughput and low delay through simulation.展开更多
In the Internet of things, it is of critical importance to fully utilize the potential capacity of the network with efficient medium access control (MAC) mechanisms. In this paper, we study the convergence property ...In the Internet of things, it is of critical importance to fully utilize the potential capacity of the network with efficient medium access control (MAC) mechanisms. In this paper, we study the convergence property of the fixed point formulation of distributed coordination function (DCF), which is widely used for medium access control in wireless networks. We first Kind that the fixed point could be repelling, which means that it is impossible for an MAC system to converge at its fixed point. Next, we show the existence of periodic points to prove that the fixed point function will oscillate between two periodic points when the fixed point is repelling. We also find that the average of the two periodic points is a close approximation of the fixed point. Based on the findings, we propose an algorithm to compute the fixed point efficiently. Simulation results verify the accuracy and efficiency of our algorithm compared with the previous fixed point computing method.展开更多
文摘This paper presents an analytical saturation throughput model of IEEE 802.11 DCF (distributed coordination function) with basic access in ad hoc mode. The model takes into account freezing of the backoff timer when a station senses busy channel. It is shown that taking into account this feature of DCF is important in modeling saturation throughput by yielding more accurate and realistic results than models known from literature. The proposed analytical model also takes into account the effect of transmission errors. All essential features of the proposed analytical approach are illustrated with numerical results. The presen-tation of the model is proceeded by an overview of approaches to IEEE 802.11 network performance evaluation presented in the literature.
文摘IEEE 802.11 distributed coordination function(DCF)can alleviate the collision and hidden station problem,but it doesn't differentiate traffic categories(TC).Therefore,it can't provide sufficient quality of service(QoS)support for different TC.Recently,a new contention-based enhanced distributed channel access(EDCA)scheme is proposed which provides a probabilistic QoS support.In this paper,an improved EDCA scheme for service differentiation in ad hoc networks is proposed.In this scheme,signal channel resistance coefficient is used to adjust the contention window(CW).It proves that the scheme provides the traffic differentiation,high throughput and low delay through simulation.
基金supported by the National Basic Research Program of China(No.2011CB302702)the NationalNatural Science Foundation of China(Nos.60803140,60970133,61070187)
文摘In the Internet of things, it is of critical importance to fully utilize the potential capacity of the network with efficient medium access control (MAC) mechanisms. In this paper, we study the convergence property of the fixed point formulation of distributed coordination function (DCF), which is widely used for medium access control in wireless networks. We first Kind that the fixed point could be repelling, which means that it is impossible for an MAC system to converge at its fixed point. Next, we show the existence of periodic points to prove that the fixed point function will oscillate between two periodic points when the fixed point is repelling. We also find that the average of the two periodic points is a close approximation of the fixed point. Based on the findings, we propose an algorithm to compute the fixed point efficiently. Simulation results verify the accuracy and efficiency of our algorithm compared with the previous fixed point computing method.