主动配电网以其较强的控制能力可以接纳大量分布式电源(DG),文章在配电系统安全域(distribution system security region,DSSR)的基础上提出了DG及微网的运行域。首先,考虑DG及微网的接入位置、出力大小以及渗透率等因素对配电网的影响...主动配电网以其较强的控制能力可以接纳大量分布式电源(DG),文章在配电系统安全域(distribution system security region,DSSR)的基础上提出了DG及微网的运行域。首先,考虑DG及微网的接入位置、出力大小以及渗透率等因素对配电网的影响,提出了DG及微网运行域的概念:运行域描述了保证配电网安全前提下的DG及微网出力范围,能方便地用于对DG及微网的主动调度。其次,提出了DG及微网运行域的数学模型及计算方法,能计算得到满足电压、潮流等约束下不同类型DG及微网的运行域。最后,利用IEEE 33节点算例,计算得出PQ型和PV型的DG及微网运行域,并与不含DG和微网的负荷运行域进行对比分析,验证了所提方法的有效性。DG或微网的加入导致运行域面积增大,拓扑结构更加复杂;相同条件下,PV型微网比PQ型微网运行域面积更大。展开更多
文摘主动配电网以其较强的控制能力可以接纳大量分布式电源(DG),文章在配电系统安全域(distribution system security region,DSSR)的基础上提出了DG及微网的运行域。首先,考虑DG及微网的接入位置、出力大小以及渗透率等因素对配电网的影响,提出了DG及微网运行域的概念:运行域描述了保证配电网安全前提下的DG及微网出力范围,能方便地用于对DG及微网的主动调度。其次,提出了DG及微网运行域的数学模型及计算方法,能计算得到满足电压、潮流等约束下不同类型DG及微网的运行域。最后,利用IEEE 33节点算例,计算得出PQ型和PV型的DG及微网运行域,并与不含DG和微网的负荷运行域进行对比分析,验证了所提方法的有效性。DG或微网的加入导致运行域面积增大,拓扑结构更加复杂;相同条件下,PV型微网比PQ型微网运行域面积更大。