随着信息技术的不断发展和普及,电力系统监控与控制逐渐向数字化、自动化以及智能化方向发展。同时,网络安全面临的挑战日益严峻。电力系统作为关乎国家经济安全和民生福祉的重要基础设施,其安全稳定运行对于社会的正常运转至关重要。...随着信息技术的不断发展和普及,电力系统监控与控制逐渐向数字化、自动化以及智能化方向发展。同时,网络安全面临的挑战日益严峻。电力系统作为关乎国家经济安全和民生福祉的重要基础设施,其安全稳定运行对于社会的正常运转至关重要。分布式控制系统(Distributed Control System,DCS)作为电力系统监控与控制的核心系统,承担着实时监测、数据采集以及远程控制等重要任务,其安全性直接关系到整个电力系统的安全和稳定运行。文章从DCS网络安全维护的角度出发,探讨在电力系统监控与控制中的关键技术和应用策略。展开更多
Safety-critical applications such as the independently driving systems of electric vehicle (EV) require a high degree of reliability. The controller area network (CAN) is used extensively in the control sectors. A...Safety-critical applications such as the independently driving systems of electric vehicle (EV) require a high degree of reliability. The controller area network (CAN) is used extensively in the control sectors. A new real-time and reliable scheduling algorithm based on time-triggered scheduler with a focus on the CAN-based distributed control systems for independently driving EV is exploited. A distributed control network model for a dual-wheel independendy driving EV is established. The timing and reliabili- ty analysis in the worst case with the algorithm is used to evaluate the predictability and dependability and the simulation based on the algorithm with CANoe software is designed. The results indicate the algorithm is more predicable and dependable.展开更多
文摘随着信息技术的不断发展和普及,电力系统监控与控制逐渐向数字化、自动化以及智能化方向发展。同时,网络安全面临的挑战日益严峻。电力系统作为关乎国家经济安全和民生福祉的重要基础设施,其安全稳定运行对于社会的正常运转至关重要。分布式控制系统(Distributed Control System,DCS)作为电力系统监控与控制的核心系统,承担着实时监测、数据采集以及远程控制等重要任务,其安全性直接关系到整个电力系统的安全和稳定运行。文章从DCS网络安全维护的角度出发,探讨在电力系统监控与控制中的关键技术和应用策略。
基金Supported by the National High Technology Research and Development Programme of China (No. (2008AA11 A146 ), China Postdoctoral Science Foundation (20090450298).
文摘Safety-critical applications such as the independently driving systems of electric vehicle (EV) require a high degree of reliability. The controller area network (CAN) is used extensively in the control sectors. A new real-time and reliable scheduling algorithm based on time-triggered scheduler with a focus on the CAN-based distributed control systems for independently driving EV is exploited. A distributed control network model for a dual-wheel independendy driving EV is established. The timing and reliabili- ty analysis in the worst case with the algorithm is used to evaluate the predictability and dependability and the simulation based on the algorithm with CANoe software is designed. The results indicate the algorithm is more predicable and dependable.