This paper presents an efficient algorithm for optimization of radial distribution systems by a network reconfiguration to balance feeder loads and eliminate overload conditions. The system load-balancing index is use...This paper presents an efficient algorithm for optimization of radial distribution systems by a network reconfiguration to balance feeder loads and eliminate overload conditions. The system load-balancing index is used to determine the loading conditions of the system and maximum system loading capacity. The index value has to be minimum in the optimal network reconfiguration of load balancing. The tabu search algorithm is employed to search for the optimal network reconfiguration. The basic idea behind the search is a move from a current solution to its neighborhood by effectively utilizing a memory to provide an efficient search for optimality. It presents low computational effort and is able to find good quality configurations. Simulation results for a radial 69-bus system. The study results show that the optimal on/off patterns of the switches can be identified to give the best network reconfiguration involving balancing of feeder loads while respecting all the constraints.展开更多
文摘This paper presents an efficient algorithm for optimization of radial distribution systems by a network reconfiguration to balance feeder loads and eliminate overload conditions. The system load-balancing index is used to determine the loading conditions of the system and maximum system loading capacity. The index value has to be minimum in the optimal network reconfiguration of load balancing. The tabu search algorithm is employed to search for the optimal network reconfiguration. The basic idea behind the search is a move from a current solution to its neighborhood by effectively utilizing a memory to provide an efficient search for optimality. It presents low computational effort and is able to find good quality configurations. Simulation results for a radial 69-bus system. The study results show that the optimal on/off patterns of the switches can be identified to give the best network reconfiguration involving balancing of feeder loads while respecting all the constraints.