期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于GIS的矿山图形系统应用研究 被引量:2
1
作者 马义如 高聪 《计算机光盘软件与应用》 2012年第11期49-50,共2页
随着煤炭行业的发展,煤矿领域的信息化发展迅速,特别是煤炭集团企业对信息化的需求更为迫切;集团企业需要掌握基层矿山的生产动态信息,从而能够对矿山进行深入的管理;针对煤矿集团企业对矿山的生产动态管理的需要,提出基于GIS的矿山图... 随着煤炭行业的发展,煤矿领域的信息化发展迅速,特别是煤炭集团企业对信息化的需求更为迫切;集团企业需要掌握基层矿山的生产动态信息,从而能够对矿山进行深入的管理;针对煤矿集团企业对矿山的生产动态管理的需要,提出基于GIS的矿山图形系统,解决了数据格式统一,图件规范统一,数据统一管理的问题;从集团管理层面的管理需要,数据共享方面及时掌握生产动态;结合储量管理的具体业务,尝试了企业内统一构建矿山图形系统的可行性。 展开更多
关键词 GIS技术 矿山储量管理 分布式空间库 离线数据
下载PDF
DCAD:a Dual Clustering Algorithm for Distributed Spatial Databases 被引量:15
2
作者 ZHOU Jiaogen GUAN Jihong LI Pingxiang 《Geo-Spatial Information Science》 2007年第2期137-144,共8页
Spatial objects have two types of attributes: geometrical attributes and non-geometrical attributes, which belong to two different attribute domains (geometrical and non-geometrical domains). Although geometrically... Spatial objects have two types of attributes: geometrical attributes and non-geometrical attributes, which belong to two different attribute domains (geometrical and non-geometrical domains). Although geometrically scattered in a geometrical domain, spatial objects may be similar to each other in a non-geometrical domain. Most existing clustering algorithms group spatial datasets into different compact regions in a geometrical domain without considering the aspect of a non-geometrical domain. However, many application scenarios require clustering results in which a cluster has not only high proximity in a geometrical domain, but also high similarity in a non-geometrical domain. This means constraints are imposed on the clustering goal from both geometrical and non-geometrical domains simultaneously. Such a clustering problem is called dual clustering. As distributed clustering applications become more and more popular, it is necessary to tackle the dual clustering problem in distributed databases. The DCAD algorithm is proposed to solve this problem. DCAD consists of two levels of clustering: local clustering and global clustering. First, clustering is conducted at each local site with a local clustering algorithm, and the features of local clusters are extracted clustering is obtained based on those features fective and efficient. Second, local features from each site are sent to a central site where global Experiments on both artificial and real spatial datasets show that DCAD is effective and efficient. 展开更多
关键词 distributed clustering dual clustering distributed spatial database
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部