In light of the high nonlinearity of LuGre friction model, a novel method based on ant colony algorithm(ACA) for identifying the friction parameters of flight simulation servo system is proposed. ACA is a parallelized...In light of the high nonlinearity of LuGre friction model, a novel method based on ant colony algorithm(ACA) for identifying the friction parameters of flight simulation servo system is proposed. ACA is a parallelized bionic optimization algorithm inspired from the behavior of real ants, and a kind of positive feedback mechanism is adopted in ACA. On the basis of brief introduction of LuGre friction model, a method for identifying the static LuGre friction parameters and the dynamic LuGre friction parameters using ACA is derived. Finally, this new friction parameter identification scheme is applied to a electric-driven flight simulation servo system with high precision. Simulation and application results verify the feasibility and the effectiveness of the scheme. It provides a new way to identify the friction parameters of LuGre model.展开更多
文摘In light of the high nonlinearity of LuGre friction model, a novel method based on ant colony algorithm(ACA) for identifying the friction parameters of flight simulation servo system is proposed. ACA is a parallelized bionic optimization algorithm inspired from the behavior of real ants, and a kind of positive feedback mechanism is adopted in ACA. On the basis of brief introduction of LuGre friction model, a method for identifying the static LuGre friction parameters and the dynamic LuGre friction parameters using ACA is derived. Finally, this new friction parameter identification scheme is applied to a electric-driven flight simulation servo system with high precision. Simulation and application results verify the feasibility and the effectiveness of the scheme. It provides a new way to identify the friction parameters of LuGre model.