随着信息技术的不断发展和普及,电力系统监控与控制逐渐向数字化、自动化以及智能化方向发展。同时,网络安全面临的挑战日益严峻。电力系统作为关乎国家经济安全和民生福祉的重要基础设施,其安全稳定运行对于社会的正常运转至关重要。...随着信息技术的不断发展和普及,电力系统监控与控制逐渐向数字化、自动化以及智能化方向发展。同时,网络安全面临的挑战日益严峻。电力系统作为关乎国家经济安全和民生福祉的重要基础设施,其安全稳定运行对于社会的正常运转至关重要。分布式控制系统(Distributed Control System,DCS)作为电力系统监控与控制的核心系统,承担着实时监测、数据采集以及远程控制等重要任务,其安全性直接关系到整个电力系统的安全和稳定运行。文章从DCS网络安全维护的角度出发,探讨在电力系统监控与控制中的关键技术和应用策略。展开更多
The smart grid is the next generation of power and distribution systems. The integration of advanced network, communications, and computing techniques allows for the enhancement of efficiency and reliability. The smar...The smart grid is the next generation of power and distribution systems. The integration of advanced network, communications, and computing techniques allows for the enhancement of efficiency and reliability. The smart grid interconnects the flow of information via the power line, intelligent metering, renewable and distributed energy systems, and a monitoring and controlling infrastructure. For all the advantages that these components come with, they remain at risk to a spectrum of physical and digital attacks. This paper will focus on digital vulnerabilities within the smart grid and how they may be exploited to form full fledged attacks on the system. A number of countermeasures and solutions from the literature will also be reported, to give an overview of the options for dealing with such problems. This paper serves as a triggering point for future research into smart grid cyber security.展开更多
文摘随着信息技术的不断发展和普及,电力系统监控与控制逐渐向数字化、自动化以及智能化方向发展。同时,网络安全面临的挑战日益严峻。电力系统作为关乎国家经济安全和民生福祉的重要基础设施,其安全稳定运行对于社会的正常运转至关重要。分布式控制系统(Distributed Control System,DCS)作为电力系统监控与控制的核心系统,承担着实时监测、数据采集以及远程控制等重要任务,其安全性直接关系到整个电力系统的安全和稳定运行。文章从DCS网络安全维护的角度出发,探讨在电力系统监控与控制中的关键技术和应用策略。
文摘The smart grid is the next generation of power and distribution systems. The integration of advanced network, communications, and computing techniques allows for the enhancement of efficiency and reliability. The smart grid interconnects the flow of information via the power line, intelligent metering, renewable and distributed energy systems, and a monitoring and controlling infrastructure. For all the advantages that these components come with, they remain at risk to a spectrum of physical and digital attacks. This paper will focus on digital vulnerabilities within the smart grid and how they may be exploited to form full fledged attacks on the system. A number of countermeasures and solutions from the literature will also be reported, to give an overview of the options for dealing with such problems. This paper serves as a triggering point for future research into smart grid cyber security.