为了提高分布式视频压缩感知(Distributed Video Compressive Sensing,DVCS)的率失真性能,文中提出根据视频非关键帧图像的时间相关性将帧内各块分为静止块与运动块两类,并对它们设定不同的测量率以提高压缩感知(Compressive Sensing,CS...为了提高分布式视频压缩感知(Distributed Video Compressive Sensing,DVCS)的率失真性能,文中提出根据视频非关键帧图像的时间相关性将帧内各块分为静止块与运动块两类,并对它们设定不同的测量率以提高压缩感知(Compressive Sensing,CS)捕获信息的效率。在重构过程中,提出运动对齐多假设预测模型进行重构,该预测模型在测量域内实现运动估计,并根据运动信息在参考帧内寻找到待重构块的若干候选匹配块,利用它们的线性加权和残差重构得到非关键帧图像的重构结果。仿真实验结果表明,文中所提出的DVCS重构算法能有效提升系统的率失真性能,与现有方法相比,在重构时间基本不变的情况下,获得更好的主客观视频重构质量。展开更多
为了提高分布式视频压缩感知(Distributed Video Compressive Sensing,DVCS)的率失真性能,仅利用稀疏先验知识不能很好地保护视频帧的边缘与纹理细节,本文提出利用视频非局部相似性形成正则化项融入联合重构模型以有效去除边缘与纹理区...为了提高分布式视频压缩感知(Distributed Video Compressive Sensing,DVCS)的率失真性能,仅利用稀疏先验知识不能很好地保护视频帧的边缘与纹理细节,本文提出利用视频非局部相似性形成正则化项融入联合重构模型以有效去除边缘与纹理区域的模糊和块效应现象。仿真实验表明,本文所提出的联合重构算法可有效地改善主客观视频重构质量,能以一定计算复杂度为代价提高分布式视频压缩感知系统的率失真性能。展开更多
文摘为了提高分布式视频压缩感知(Distributed Video Compressive Sensing,DVCS)的率失真性能,文中提出根据视频非关键帧图像的时间相关性将帧内各块分为静止块与运动块两类,并对它们设定不同的测量率以提高压缩感知(Compressive Sensing,CS)捕获信息的效率。在重构过程中,提出运动对齐多假设预测模型进行重构,该预测模型在测量域内实现运动估计,并根据运动信息在参考帧内寻找到待重构块的若干候选匹配块,利用它们的线性加权和残差重构得到非关键帧图像的重构结果。仿真实验结果表明,文中所提出的DVCS重构算法能有效提升系统的率失真性能,与现有方法相比,在重构时间基本不变的情况下,获得更好的主客观视频重构质量。
文摘为了提高分布式视频压缩感知(Distributed Video Compressive Sensing,DVCS)的率失真性能,仅利用稀疏先验知识不能很好地保护视频帧的边缘与纹理细节,本文提出利用视频非局部相似性形成正则化项融入联合重构模型以有效去除边缘与纹理区域的模糊和块效应现象。仿真实验表明,本文所提出的联合重构算法可有效地改善主客观视频重构质量,能以一定计算复杂度为代价提高分布式视频压缩感知系统的率失真性能。