期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于低维语义向量模型的语义相似度度量 被引量:6
1
作者 蔡圆媛 卢苇 《中国科学技术大学学报》 CAS CSCD 北大核心 2016年第9期719-726,共8页
语义相似性度量能够提高信息检索的准确性和效率,已成为文本处理中的一个核心任务.为解决一词多义等词汇歧义问题,提出一种基于低维向量组合的语义向量模型.该模型引入了知识库与语料库的多语义特征的融合,主要的语义融合对象包括连续... 语义相似性度量能够提高信息检索的准确性和效率,已成为文本处理中的一个核心任务.为解决一词多义等词汇歧义问题,提出一种基于低维向量组合的语义向量模型.该模型引入了知识库与语料库的多语义特征的融合,主要的语义融合对象包括连续的分布式词向量和从WordNet结构中的语义特征信息.首先利用深度学习技术中的神经网络语言模型,预先从文本语料中学习得到连续的低维词向量;然后从知识库WordNet中抽取多种语义信息和关系信息;再将多语义信息融入词向量进行知识扩展和强化,生成语义向量,从而实现基于向量空间的语义相似性度量方法.在基准测试集上的实验结果表明,该方法优于基于单一信息源(知识库WordNet或文本语料)的语义相似性度量方法,其皮尔森相关系数比基于原始词嵌套向量的方法提高了7.5%,说明在向量特征层面上的多语义信息的融合有助于度量词汇间的语义相似性. 展开更多
关键词 语义向量 特征融合 分布式词嵌套 语义相似度
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部