多传感器网络化线性离散系统的每个传感器基于自己的观测数据可进行局部状态估计。当局部估值被传输给融合中心时,可能遭受DoS(Denial of service)攻击。为了补偿DoS攻击引起的数据丢失,采用丢失数据的预报器进行补偿。应用线性无偏最...多传感器网络化线性离散系统的每个传感器基于自己的观测数据可进行局部状态估计。当局部估值被传输给融合中心时,可能遭受DoS(Denial of service)攻击。为了补偿DoS攻击引起的数据丢失,采用丢失数据的预报器进行补偿。应用线性无偏最小方差矩阵加权融合算法获得分布式融合状态滤波器。所提出的分布式融合滤波器改善了局部估计的精度,且比协方差交叉融合算法具有更高的估计精度。仿真例子验证了算法的有效性。展开更多
文摘多传感器网络化线性离散系统的每个传感器基于自己的观测数据可进行局部状态估计。当局部估值被传输给融合中心时,可能遭受DoS(Denial of service)攻击。为了补偿DoS攻击引起的数据丢失,采用丢失数据的预报器进行补偿。应用线性无偏最小方差矩阵加权融合算法获得分布式融合状态滤波器。所提出的分布式融合滤波器改善了局部估计的精度,且比协方差交叉融合算法具有更高的估计精度。仿真例子验证了算法的有效性。
文摘由于电网企业不断加快数字化转型,利用北斗定位技术将自动获取区域内光伏计量装置经纬度这一关键技术参数。文章充分利用分布式光伏集群内光伏发电装机位置空间相关性,提出一种在弱监督下基于图滤波与支持向量数据描述(support vector data description,SVDD)的分布式光伏集群发电异常检测方法。首先建立分布式光伏集群发电图数据结构模型,通过加权邻接矩阵描述分布式光伏发电点空间耦合性,其次构造图高通滤波器将时域参数转化为频域参数,然后通过SVDD算法优化图滤波结果,进一步挖掘图高通滤波器阈值与输出功率数据之间的关系。结果表明,采用图滤波器和SVDD算法模型方法在分布式光伏发电异常检测精度上有显著提高。