Mountain catchments are prone to flash flooding due to heavy rainfall. Enhanced understanding of the generation and evolution processes of flash floods is essential for effective flood risk management. However, tradit...Mountain catchments are prone to flash flooding due to heavy rainfall. Enhanced understanding of the generation and evolution processes of flash floods is essential for effective flood risk management. However, traditional distributed hydrological models based on kinematic and diffusion wave approximations ignore certain physical mechanisms of flash floods and thus bear excessive uncertainty. Here a hydrodynamic model is presented for flash floods based on the full two-dimensional shallow water equations incorporating rainfall and infiltration. Laboratory experiments of overland flows were modelled to illustrate the capability of the model. Then the model was applied to resolve two observed flash floods of distinct magnitudes in the Lengkou catchment in Shanxi Province, China. The present model is shown to be able to reproduce the flood flows fairly well compared to the observed data. The spatial distribution of rainfall is shown to be crucial for the modelling of flash floods. Sensitivity analyses of the model parameters reveal that the stage and discharge hydrographs are more sensitive to the Manning roughness and initial water content in the catchment than to the Green-Ampt head. Most notably, as the flash flood augments due to heavier rainfall, the modelling results agree with observed data better, which clearly characterizes the paramount role of rainfall in dictating the floods. From practical perspectives, the proposed model is more appropriate for modelling large flash floods.展开更多
With the rapid development of Internet of Things (IoT),the issue of trust in distributed routing systems has attracted more research attention.The existing trust management frameworks,however,suffer from some possible...With the rapid development of Internet of Things (IoT),the issue of trust in distributed routing systems has attracted more research attention.The existing trust management frameworks,however,suffer from some possible attacks in hostile environments,such as false accusation,collusion,on-off,and conflicting behavior.Therefore,more comprehensive models should be proposed to predict the trust level of nodes on potential routes more precisely,and to defeat several kinds of possible attacks.This paper makes an attempt to design an attack-resistant trust management model based on beta function for distributed routing strategy in IoT.Our model can evaluate and propagate reputation in distributed routing systems.We first describe possible attacks on existing systems.Our model is then proposed to establish reliable trust relations between self-organized nodes and defeat possible attacks in distributed routing systems.We also propose a theoretical basis and skeleton of our model.Finally,some performance evaluations and security analyses are provided to show the effectiveness and robustness of our model compared with the existing systems.展开更多
Species distribution models are increasing in popularity for mapping suitable habitat for species of management con- cern. Many investigators now recognize that extrapolations of these models with geographic informati...Species distribution models are increasing in popularity for mapping suitable habitat for species of management con- cern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding ex- trapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suit-able habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5): 642-647,2011].展开更多
This paper introduces the process of development and practical use implementation of an advanced river management system for supporting integrated water resources management practices in Asian river basins under the f...This paper introduces the process of development and practical use implementation of an advanced river management system for supporting integrated water resources management practices in Asian river basins under the framework of GEOSS Asia water cycle initiative (AWCI). The system is based on integration of data from earth observation satellites and in-situ networks with other types of data, including numerical weather prediction model outputs, climate model outputs, geographical infor- mation, and socio-economic data. The system builds on the water and energy budget distributed hydrological model (WEB-DHM) that was adapted for specific conditions of studied basins, in particular snow and glacier phenomena and equipped with other functions such as dam operation optimization scheme and a set of tools for climate change impact assess- ment to be able to generate relevant information for policy and decision makers. In situ data were archived for 18 selected ba- sins at the Data Integration and Analysis System (DIAS) of Japan and demonstration projects were carded out showing poten- tial of the new system. It included climate change impact assessment on hydrological regimes, which is presently a critical step for sound management decisions. Results of such three case studies in Pakistan, Philippines, and Vietnam are provided here.展开更多
The Daya Bay Reactor Neutrino Experiment is to measure the smallest mixing angle θ13.The experiment contains three major experiment halls,Daya Bay near site,Linao near site and far site,and two major kinds of detecto...The Daya Bay Reactor Neutrino Experiment is to measure the smallest mixing angle θ13.The experiment contains three major experiment halls,Daya Bay near site,Linao near site and far site,and two major kinds of detectors,antineutrino detector which is to detect the antineutrinos by the inverse beta-decay reaction in Gd-LS,and muon detector which is to study and reject cosmogenic backgrounds.The goal of the detector control system(DCS)is to operate and detect the detectors and keep them running in safety.In consideration of the limited fund of this system and manpower of working on this system,the LabVIEW is chosen to develop the detector control system.The architecture of DCS adopts the distributed data management which is based on client-server model.The server part is to detect and operate parameters from hardware,save data to database and release data to clients,the client is to receive data from the server.The detector control system contains three parts:the hardware part,the local control system and the global control part.The local control system includes high voltage supply system,low voltage supply system,VME crate system,temperature and humidity system,gas pressure system,and so on.展开更多
Identifying the underlying mechanisms that influence the spatial patterns in populations improves the forecasts of the alternative management strategies on the spatial dynamics of the populations, which are critical f...Identifying the underlying mechanisms that influence the spatial patterns in populations improves the forecasts of the alternative management strategies on the spatial dynamics of the populations, which are critical for assessing and managing the fisheries and improving the water resource management. This paper described a new approach of the numerical model for the prediction of the aquatic animal distribution in the flows. The model was developed based on the kinetic theory of gases, the mechanism of the aquatic animal movement and the flow hydrodynamic patterns. The model was validated using the available experimental data and an acceptable agreement was obtained. A comprehensive parameter study was then conducted to help understand the impact and the sensitivity of each parameter to the aquatic animal distribution. The promising results of the model reveal the prospect of applying this model to the reliable prediction of the aquatic animal distribution within a relatively large water area.展开更多
基金funded by Natural Science Foundation of China (Grants Nos. 51279144 and 11432015)Chinese Academy of Sciences (Grant No. KZZD-EW-05-01-03)
文摘Mountain catchments are prone to flash flooding due to heavy rainfall. Enhanced understanding of the generation and evolution processes of flash floods is essential for effective flood risk management. However, traditional distributed hydrological models based on kinematic and diffusion wave approximations ignore certain physical mechanisms of flash floods and thus bear excessive uncertainty. Here a hydrodynamic model is presented for flash floods based on the full two-dimensional shallow water equations incorporating rainfall and infiltration. Laboratory experiments of overland flows were modelled to illustrate the capability of the model. Then the model was applied to resolve two observed flash floods of distinct magnitudes in the Lengkou catchment in Shanxi Province, China. The present model is shown to be able to reproduce the flood flows fairly well compared to the observed data. The spatial distribution of rainfall is shown to be crucial for the modelling of flash floods. Sensitivity analyses of the model parameters reveal that the stage and discharge hydrographs are more sensitive to the Manning roughness and initial water content in the catchment than to the Green-Ampt head. Most notably, as the flash flood augments due to heavier rainfall, the modelling results agree with observed data better, which clearly characterizes the paramount role of rainfall in dictating the floods. From practical perspectives, the proposed model is more appropriate for modelling large flash floods.
基金supported by the National Natural Science Foundation of China under Grant No.61100219the Fundamental Research Funds for the Central Universities under Grant No.2012JBM010the Key Program of National Natural Science Foundation of China under Grant No.60833002
文摘With the rapid development of Internet of Things (IoT),the issue of trust in distributed routing systems has attracted more research attention.The existing trust management frameworks,however,suffer from some possible attacks in hostile environments,such as false accusation,collusion,on-off,and conflicting behavior.Therefore,more comprehensive models should be proposed to predict the trust level of nodes on potential routes more precisely,and to defeat several kinds of possible attacks.This paper makes an attempt to design an attack-resistant trust management model based on beta function for distributed routing strategy in IoT.Our model can evaluate and propagate reputation in distributed routing systems.We first describe possible attacks on existing systems.Our model is then proposed to establish reliable trust relations between self-organized nodes and defeat possible attacks in distributed routing systems.We also propose a theoretical basis and skeleton of our model.Finally,some performance evaluations and security analyses are provided to show the effectiveness and robustness of our model compared with the existing systems.
文摘Species distribution models are increasing in popularity for mapping suitable habitat for species of management con- cern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding ex- trapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suit-able habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5): 642-647,2011].
基金the Asia Pacific Network for Global Change Research(APN)for financial support of the AWCI activities through several projects funded under the APN programmes
文摘This paper introduces the process of development and practical use implementation of an advanced river management system for supporting integrated water resources management practices in Asian river basins under the framework of GEOSS Asia water cycle initiative (AWCI). The system is based on integration of data from earth observation satellites and in-situ networks with other types of data, including numerical weather prediction model outputs, climate model outputs, geographical infor- mation, and socio-economic data. The system builds on the water and energy budget distributed hydrological model (WEB-DHM) that was adapted for specific conditions of studied basins, in particular snow and glacier phenomena and equipped with other functions such as dam operation optimization scheme and a set of tools for climate change impact assess- ment to be able to generate relevant information for policy and decision makers. In situ data were archived for 18 selected ba- sins at the Data Integration and Analysis System (DIAS) of Japan and demonstration projects were carded out showing poten- tial of the new system. It included climate change impact assessment on hydrological regimes, which is presently a critical step for sound management decisions. Results of such three case studies in Pakistan, Philippines, and Vietnam are provided here.
文摘The Daya Bay Reactor Neutrino Experiment is to measure the smallest mixing angle θ13.The experiment contains three major experiment halls,Daya Bay near site,Linao near site and far site,and two major kinds of detectors,antineutrino detector which is to detect the antineutrinos by the inverse beta-decay reaction in Gd-LS,and muon detector which is to study and reject cosmogenic backgrounds.The goal of the detector control system(DCS)is to operate and detect the detectors and keep them running in safety.In consideration of the limited fund of this system and manpower of working on this system,the LabVIEW is chosen to develop the detector control system.The architecture of DCS adopts the distributed data management which is based on client-server model.The server part is to detect and operate parameters from hardware,save data to database and release data to clients,the client is to receive data from the server.The detector control system contains three parts:the hardware part,the local control system and the global control part.The local control system includes high voltage supply system,low voltage supply system,VME crate system,temperature and humidity system,gas pressure system,and so on.
基金supported by the National Natural Science Foundation of China(Grant Nos.51139003&11372161)
文摘Identifying the underlying mechanisms that influence the spatial patterns in populations improves the forecasts of the alternative management strategies on the spatial dynamics of the populations, which are critical for assessing and managing the fisheries and improving the water resource management. This paper described a new approach of the numerical model for the prediction of the aquatic animal distribution in the flows. The model was developed based on the kinetic theory of gases, the mechanism of the aquatic animal movement and the flow hydrodynamic patterns. The model was validated using the available experimental data and an acceptable agreement was obtained. A comprehensive parameter study was then conducted to help understand the impact and the sensitivity of each parameter to the aquatic animal distribution. The promising results of the model reveal the prospect of applying this model to the reliable prediction of the aquatic animal distribution within a relatively large water area.